INDUSTRIA 4.0

ANÁLISIS, EVOLUCIÓN E IMPLICACIONES PARA EL EMPLEO EN CASTILLA Y LEÓN
Estudio
Industria 4.0: Análisis, evolución e implicaciones para el empleo en Castilla y León

Proyecto concedido a la entidad y dirección
UGT Castilla y León

Colaboración
Gabinete técnico UGT-FICA Castilla y León

Desarrollo del trabajo de campo y redacción del informe
Gabinete de Recolocación Industrial

© Valladolid, 2017
INFORME EJECUTIVO
INFORME EJECUTIVO

El concepto Industria 4.0 se asocia a una nueva manera de organizar los sistemas productivos, desde la concepción del producto, las necesidades de optimización de los procesos y el uso intensivo de las nuevas tecnologías, consiguiendo un incremento de la eficiencia y la competitividad y ajustándose a las necesidades personalizadas del consumidor. Cuando se habla de este término no solo se hace referencia a modernas fábricas completamente digitalizadas, sino que se trata de un concepto mucho más global que tiene consecuencias en la mayoría de ámbitos de la sociedad.

Actualmente los países más industrializados ya cuentan con planes para posicionarse lo más favorablemente ante este nuevo escenario. Parece claro que aquellas regiones que no se adapten rápidamente a este movimiento de regeneración industrial terminarán encontrando dificultades para seguir manteniendo sus niveles de producción y bienestar. La transformación digital de la industria es una oportunidad de crecimiento y sostenibilidad económica y al mismo tiempo un desafío que debe afrontarse en el corto plazo, de forma que comunidades como Castilla y León puedan no solo conservar su tejido industrial, sino reforzarlo.

La mayor automatización de la industria hace pensar que muchos de los trabajos que hoy conocemos desaparecerán, dando lugar a la aparición de nuevos puestos de trabajo que con seguridad requerirán altos niveles de formación y especialización. De ahí la importancia de realizar un estudio como este, cuyo objetivo general es conocer qué nivel de implantación digital tienen las empresas impulsoras de Castilla y León de cara a afrontar desde la región la transición hacia la Industria 4.0, contribuyendo a la generación y mantenimiento del empleo.
Uno de los objetivos específicos que pretende alcanzar el estudio es la identificación de desajustes en la inclusión digital. Es decir, conocer la diferencia entre las oportunidades que ofrece la transformación digital y el nivel de madurez digital de cada sector analizado. También se busca detectar los factores que obstaculizan la transformación digital de las empresas, y que conllevan una posible pérdida de competitividad, a través de la identificación de los sectores productivos en riesgo por la no adecuación de su oferta al nuevo cliente 4.0.

Otras de las pretensiones del estudio es mostrar cómo las empresas impulsoras están afrontando el reto de contar con personal cualificado. Finalmente se detecta dónde se están produciendo las oportunidades de empleo actuales. Todo ello con la vista puesta en ofrecer propuestas de mejora a implementar para aprovechar las sinergias que ofrece la Industria 4.0 y posicionar a Castilla y León como una economía competitiva y sostenible.

Para realizar la selección de empresas industriales impulsoras que presentan mayor nivel de implementación de tecnología 4.0 de la región, se han elegido empresas de los sectores Agroalimentario, Automoción y Hábitat, ya que cada uno de ellos tiene unas características particulares que lo hacen representativo en el análisis de estudio. El principal criterio utilizado para dicha selección ha sido el nivel tecnológico y de digitalización de las empresas, contando finalmente con la colaboración de 32 empresas impulsoras y 6 startups.

Para llevar a cabo este estudio se ha realizado un método de investigación a lo largo de varias fases. La primera de ellas se ha basado en obtener información y datos representativos sobre la transformación digital en la industria de Castilla y León, España y Europa. Se ha acudido a fuentes secundarias (recopilación documental) y fuentes primarias, basadas en la asistencia a jornadas, puntos de observación en centros tecnológicos y clúusters, y entrevistas a directores de innovación, responsables de recursos humanos y startups.
A continuación se ha analizado la información recabada para poder generar conclusiones acerca de la situación de las entidades impulsoras respecto a la implantación del nuevo paradigma industrial. Finalmente se ha intentado definir una estrategia conjunta entre entes públicos, organizaciones y empresas para abordar los cambios generados por la transformación digital en los sectores industriales de la región.

Hoy en día, la industria castellana y leonesa, de forma generalizada, todavía no visualiza el escenario final resultante del proceso de cambio asociado a la Cuarta Revolución Industrial, existiendo un alto grado de incertidumbre en la mayoría de las empresas consultadas. Mientras que existen países europeos con un alto nivel de preparación para asumir la transformación digital, tanto Castilla y León como España tienen un tejido industrial que carece del grado de sofisticación e innovación necesario para posicionarse de forma favorable.

Un aspecto que puede frenar el progreso de la industria castellana y leonesa es el gran número de pequeñas empresas. Este colectivo empresarial es el que mayores dificultades tiene a la hora de implementar nuevas tecnologías y procesos productivos, por lo que es el que más peligro presenta de desaparecer y donde más pérdida de empleo puede generarse.

Sin embargo, Castilla y León, con una industria aglutinada en dos sectores como es el de automoción y el agroalimentario, presenta grandes posibilidades de desarrollo. Por ello, es imprescindible fortalecer otras áreas económicas y diversificar su producción, a fin de alcanzar una industria competitiva y sostenible, reforzada por un entorno digital innovador, y ha de hacerse lo antes posible, debido a aceleración de la innovación.
Una de las principales recomendaciones se basa en sensibilizar al tejido empresarial de Castilla y León, en especial a las pequeñas empresas y aquellas más tradicionales, sobre lo que consiste la Cuarta Revolución Industrial y el papel que deben jugar dentro de este proceso de cambio, así como las consecuencias que puede acarrear quedarse fuera de la digitalización. Para ello es necesario crear entornos colaborativos que generen alianzas de cooperación mediante el intercambio de conocimiento, maquinaria y trabajadores entre empresas.

También es importante potenciar una Industria del Conocimiento en Castilla y León que permita cohesionar el mundo académico con el mundo empresarial, y que aporte valor a toda la cadena del conocimiento, respaldada por proyectos empresariales con salidas reales en el mercado. Al mismo, resulta interesante detectar empresas impulsoras que puedan servir como efecto tractor al resto de empresas de sus respectivos sectores.

Una de las transformaciones en las que más va a influir la inclusión de la Digitalización Industrial es el cambio del perfil profesional tipo que se va a demandar, que será el denominado STEM (especializados en Ciencia, Tecnología, Ingeniería y Matemáticas). Existe déficit de estos profesionales en el sistema educativo, por lo que sería adecuado que las empresas elaboren programas de formación para sus trabajadores enfocados en habilidades de este tipo.

El trabajador sin cualificación cada vez tendrá una menor cabida en el mercado laboral. Por ello, cabe incidir en que desde la Administración se refuerce la formación reglada de base en competencias y conocimientos requeridos por la tecnificación y la digitalización, adecuándose y adelantándose a las necesidades que demandan los centros de trabajo. Es fundamental para superar todos los retos que exige la Cuarta Revolución Industrial y situar a las empresas industriales regionales en una estatus de competitividad en el mercado actual, alinear el conocimiento (sistema educativo reglado y centros tecnológicos) con las estrategias empresariales.
Aunque en las empresas consultadas la implantación de la tecnología no ha supuesto pérdida de empleo hasta ahora, es importante potenciar el factor humano, dando valor añadido a las personas y remarcando que digitalizar no es sinónimo de ser sustituido por un robot, sino de interconexión entre la máquina y el hombre hacia un fin común, ya que la sustitución de personas por máquinas de forma masiva puede acarrear mayores problemas sociales que ventajas. Es necesario poner en el centro del proceso de digitalización al trabajador, pues él debe ser el mayor beneficiado de este avance social.

Es altamente recomendable elaborar una Estrategia de Digitalización propia para Castilla y León liderada por la Administración y consensuada desde el Dialogo Social, que permita aunar todas las iniciativas, actuaciones y propuestas generadas en ese sentido, fomentando la cooperación entre todos los agentes implicados en la transformación.

En definitiva, es crucial que Castilla y León impulse un tejido empresarial dinámico y competitivo en un nuevo panorama que cambiará tecnológicamente a una enorme velocidad. Se debe aprovechar este reto que nos propone la Cuarta Revolución Industrial para afrontar la transformación de la industria y de la sociedad como una oportunidad para crecer y poder posicionarse de forma favorable frente a la inevitable trasformación digital.
INTRODUCCIÓN
INTRODUCCIÓN

El término de industria 4.0 hace referencia a la Cuarta Revolución Industrial promovida por la transformación digital no solo de la industria sino de la economía en general, por lo que marcará importantes cambios sociales en los próximos años. Por este motivo, en el presente estudio se hace referencia no al concepto de industria 4.0 sino al efecto o fenómeno que está generando de transformación digital o revolución industrial.

En lo concerniente al sector de la industria en particular, corresponde a una nueva manera de organizar los sistemas productivos, desde la concepción del producto, las necesidades de optimización de los procesos y el uso intensivo de las nuevas tecnologías, lo que lleva a un escenario de fábricas “inteligentes” o “Smart factories”, capaces de adaptarse a las necesidades personalizadas del consumidor ajustando los procesos de producción a esa demanda.

Todos los países industrializados disponen de planes estratégicos para posicionarse lo más favorablemente en la Industria 4.0, con fuertes líneas de financiación para su desarrollo.

En España, el Ministerio de Industria, Energía y Turismo despliega su propia propuesta denominada: “Industria Conectada 4.0. La transformación digital de la Industria española”. Aunque es Alemania, una vez más, la pionera. De este modo, en el año 2011 en la feria de la máquina de Hannover, dieron nombre a esta estrategia: 4.0 y se lanza el reto a su industria para que se transforme de manufacturera a

Fuente: European Commission
digitalizada y robotizada (más allá de los robots), es el nacimiento de la fábrica inteligente. Esto nos induce a pensar que la Industria que no se adapte rápidamente a este movimiento de regeneración industrial, terminará desapareciendo o quedará marginada a pequeños nichos de mercado.

Esta transformación digital, es la oportunidad de crecimiento y sostenibilidad económica que afronta la sociedad a nivel mundial. El tejido industrial de Castilla y León, en especial las pymes, tienen ante sí un gran desafío, para el que algunas de ellas se encuentran bien posicionadas y otras deberán hacerlo en el corto plazo debido a la rapidez con la que avanza esta transformación.

La introducción de estas nuevas tecnologías en la industria, implica una nueva organización de los procesos productivos, e incluso, se vislumbra que tengan efectos para el empleo impredecibles, ya que la mayor automatización de la Industria hace pensar que muchos de los trabajos que hoy conocemos como tal, desaparecerán dando lugar al surgimiento de nuevos tipos de trabajo. Profesiones impredecibles a día de hoy, y que requerirán de altos grados de formación y especialización.

Debido a este desconocimiento, a las potenciales implicaciones para el empleo y la formación y a las oportunidades que se suponen para la economía, desde la Unión General de Trabajadores (UGT), proponemos la realización del presente estudio centrado en la temática de la Industria Conectada.

En definitiva, los mercados y los sistemas productivos van a sufrir una transformación, arrastrando el cambio de los modelos económicos, la formación y la adquisición de competencias, de las relaciones laborales, obligando a tener una visión innovadora y digitalizada sobre el conjunto de la sociedad de Castilla y León.

Bajo este contexto, se pretende conocer qué nivel de implantación digital tiene el tejido empresarial de Castilla y León, e identificar las posibilidades del nuevo modelo industrial delimitando el tejido empresarial industrial que presenta un mayor potencial, y que por tanto, pueden contribuir a la generación y mantenimiento del empleo regional.
OBJETIVOS
OBJETIVOS

Objetivo general

El presente estudio surge de la necesidad de conocer en qué nivel de implantación se encuentran las empresas impulsoras de la región, de cara a afrontar desde Castilla y León la transición hacia la Industria 4.0.

Este análisis, ofrece como resultado una fotografía de la realidad actual, que sirve de imagen del proceso de transformación digital de la Industria, para conocer su impacto más inmediato en el empleo. Definir las necesidades para transformar este conocimiento resultante en PIB, lo que equivale a crear riqueza y empleo regional, es el fin último que se persigue.

Objetivos específicos

Bajo este marco estratégico, los objetivos específicos se resumen en identificar:

- El nivel de madurez digital de las entidades impulsoras.
- Las barreras existentes a las que hacer frente.
- Transformación del mercado laboral.
- Las oportunidades de creación de empleo y de negocio.
- Propuestas de mejora a implementar para aprovechar las sinergias que ofrece la Industria 4.0 y posicionar a Castilla y León como una economía competitiva y sostenible.
Estos fines se recogen en el estudio bajo dos perspectivas de análisis:

1. **Detectar el grado actual de implantación de las nuevas tecnologías 4.0** en los sectores industriales objeto del estudio bajo tres variables de análisis:

 1.1. **Análisis de Digitalización**

 Análisis en profundidad de la situación actual de las empresas impulsoras frente a la Cuarta Revolución Industrial. Se identifican las tecnologías 4.0 que se están implantando en las empresas líder o impulsoras en la transformación digital de la Industria y, se determina el **nivel de madurez digital** mediante el establecimiento de indicadores de medición o ejes de complejidad para cada fase operativa de las empresas.

 La matriz de madurez resultante en el estudio, tiene como punto de referencia para su elaboración la matriz creada por la consultora Roland Berger, al ser considerada, en el mercado, como la mejor herramienta para posicionar la situación de cada sector ante la Cuarta Revolución Industrial.

 De este modo, la delimitación de las variables del análisis de la matriz, se fundamenta en las variables definidas en la de Roland Berger y que han sido adaptadas para la elaboración del estudio para el caso de Castilla y León. Así se establecen: 3 niveles de madurez digital, cinco fases operativas de las empresas y las tecnologías 4.0 que se analizan. Cabe reseñar, que para la obtención de las variables de la Matriz de Madurez Digital adaptada, se crea un cuestionario propio e independiente a cualquier otro estudio, acorde a los objetivos a obtener.

 1.2. **Identificación de Desajustes en la Inclusión Digital**

 Diferencia entre las oportunidades que ofrecen la transformación digital y el nivel de madurez de cada sector analizado. Se perfila el **gap de penetración digital**, en relación al grado de crecimiento de cada sector, con respecto a la oportunidad que ofrece la transformación digital y el uso que se está haciendo de ella en los sectores analizados.
1.3. **DETECCIÓN DE OBSTÁCULOS HACIA LA 4.0**

Detección de los factores que obstaculizan la transformación digital de las empresas, análisis de la posible pérdida de competitividad regional, y análisis de la situación de la microempresa y de la pyme ante al nuevo cliente 4.0.

2. **Conocer el impacto de la digitalización de la Industria en el empleo y en la formación** produciéndose cambios estructurales en el ámbito laboral regional, a través del estudio de las siguientes variables.

2.1. **CAPITAL HUMANO REQUERIDO: MERCADO LABORAL**

Retrato de cómo las empresas impulsoras están afrontando el reto de contar con personal cualificado y adaptado hacia la tecnificación en función de su nivel de innovación. También, se indaga sobre la transformación del mercado Laboral hacia la cualificación digital y sus posibles consecuencias, siendo ésta una de las mayores preocupaciones que suscita la Cuarta Revolución Industrial.

2.2. **PUERTOS DE TRABAJO Y OPORTUNIDADES DE EMPLEO**

Una de las pretensiones principales del estudio, es detectar donde se están produciendo las oportunidades de empleo actuales, y las futuras en Castilla y León, nichos de empleo en la Industria y nuevos yacimientos con la creación de Startups.

Para ello se presenta un análisis exhaustivo cuantitativo y cualitativo de ofertas laborales regionales y nacionales, que sirve para orientar la búsqueda de empleo por parte de los trabajadores actuales o potenciales de la Industria regional.
I. METODOLOGÍA
I. METODOLOGÍA

Ámbito de Análisis

Para la consecución de los objetivos planteados y dada el tema de análisis como la naturaleza prospectiva del estudio “Industria 4.0 Análisis, Evolución e Implicaciones para el Empleo en Castilla y León”, la metodología de campo versa en la investigación hacia la transición digital, de empresas industriales de la región impulsoras que presentan mayor nivel de implementación de tecnología 4.0, desde la aplicación de técnicas de carácter cualitativo.

La elección de estas empresas se ha realizado bajo tres criterios cualitativos.

- **Ámbito o sector de actuación.** El análisis se centra en tres sectores de interés, con el objeto de profundizar en ellos a fin de llegar a empresas de alto nivel de innovación 4.0, y extrapolar conclusiones generales al conjunto de la Industria. Queda pendiente para próximas ediciones la segunda parte del estudio en el resto de sectores identificados RIS3.

 Los sectores de análisis son: Agroalimentario, Automoción y Hábitat. Cada uno de ellos se selecciona por tener unas características particulares que lo hacen representativo en el análisis de estudio.

 De este modo, el primero de ellos, el Agroalimentario, es el segundo sector industrial más importante de nuestra comunidad, presenta en la actualidad un gran potencial económico con empresas destacadas en fase de expansión.

 El ámbito de Automoción, constituye la primera potencia industrial de la región. Además de ser el precursor digital por excelencia en Castilla y León, es el que acapara mayor innovación, por lo que concentra un gran número de empresas pioneras y precursoras, en comparación con el resto de sectores industriales.
En tercer lugar, el sector Hábitat ha sido seleccionado por contar con una de las empresas regionales modelo por su tecnificación e introducción de tecnologías 4.0. Además, también por constituir uno de los sectores, que presentando gran dificultad debida a la crisis económica, ha visto en la Industria 4.0 una dirección de oportunidad, potenciada por un sector afín a él, como es el de la construcción, apostando por la construcción 4.0.

Para identificar el ámbito de actuación por sector, se ha utilizado como referencia la Clasificación Nacional de Actividades Económicas (CNAE). Las empresas consultadas pertenecen a algunas de éstas actividades empresariales:

<table>
<thead>
<tr>
<th>GRUPO RIS3</th>
<th>CNAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGROALIMENTARIO</td>
<td>10 Industria de la alimentación</td>
</tr>
<tr>
<td></td>
<td>11 Fabricación de bebidas</td>
</tr>
<tr>
<td>AUTOMOCIÓN, COMPONENTES Y EQUIPOS</td>
<td>22 Fabricación de productos de caucho y plástico</td>
</tr>
<tr>
<td></td>
<td>28 Fabricación de maquinaria y equipos n.c.o.p.</td>
</tr>
<tr>
<td></td>
<td>29 Fabricación de vehículos de motor, remolques y semirremolques</td>
</tr>
<tr>
<td></td>
<td>30 Fabricación de otro material de transporte</td>
</tr>
<tr>
<td>HÁBITAT</td>
<td>8 Otras Industria Extractivas</td>
</tr>
<tr>
<td></td>
<td>16 Industrias de la madera y del corcho, excepto muebles, cestería y espartería</td>
</tr>
<tr>
<td></td>
<td>23 Fabricación de otros productos minerías no metálicos</td>
</tr>
<tr>
<td></td>
<td>25 Fabricación de productos metálicos, excepto maquinaria y equipo</td>
</tr>
<tr>
<td></td>
<td>31 Fabricación de muebles</td>
</tr>
</tbody>
</table>

Nivel tecnológico Industria 4.0 de la empresa: En el proceso de selección de las empresas, se considera como criterio principal su nivel tecnológico y de digitalización, así se eligen profesionales de entidades regionales precursoras en la implantación de tecnologías de Industria 4.0 pertenecientes a los sectores objeto de análisis.

Puntos de Observación: para la detección y elección final de las empresas, se cuenta con la colaboración de profesionales en innovación y con conocimiento...
sobre la implementación digital en la Industria, pertenecientes a organismos y entidades regionales: Clústers, Centros Tecnológicos, centros de investigación de la universidad y otras instituciones o entidades innovadoras. Bajo su orientación se elabora un listado de 32 empresas impulsoras, y 6 Startups o empresas tecnológicas (TI).

Fases del estudio

Su ejecución se lleva a cabo mediante la implementación de las siguientes fases:

1. **Fase 1: Búsqueda de Información**

 En la primera fase del estudio, se localiza información y datos representativos sobre la transformación digital en la Industria de Castilla y León, España y Europa, con la finalidad de conocer con mayor profundidad el objeto de análisis, establecer un marco teórico que permita su comprensión y de orientar el trabajo de campo cualitativo a desarrollar.

 A) Fuentes Secundarias

 TÉCNICA: Recopilación Documental

 Compilación bibliográfica específica, de entidades privadas como de organismos públicos, sobre la Cuarta Revolución Industrial y tecnologías 4.0, estudios de digitalización, fuentes estadísticas oficiales a nivel regional, nacional, y Europeo, estudios e informes sobre el impacto de la digitalización en el empleo, oportunidades de empleo de nuevos yacimientos de empleo del sector TIC, ocupaciones más contratadas, datos de formación, etc.

 B) Fuentes Primarias

 Para la recopilación de información primaria, se realiza una primera planificación del número de entrevistas a ejecutar por técnica. No obstante, según evoluciona el estudio
y, principalmente debido a las necesidades que surgen y del grado de participación de las empresas, esta primera planificación varía.

Tabla 1. Resumen del trabajo de campo: planificación y ejecución

<table>
<thead>
<tr>
<th>TÉCNICAS DE INVESTIGACIÓN</th>
<th>CAMPO PLANIFICADO</th>
<th>CAMPO REALIZADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASISTENCIA A JORNADAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUNTOS DE OBSERVACIÓN EN CENTROS TECNOLÓGICOS Y CLÚSTERS</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>ENTREVISTAS A DIRECTORES INNOVACIÓN DE (GUIÓN SEMIESTRUCTURADO)</td>
<td>AGROALIMENTARIO: 6</td>
<td>AGROALIMENTARIO: 5</td>
</tr>
<tr>
<td></td>
<td>AUTOMOCIÓN: 8</td>
<td>AUTOMOCIÓN: 7</td>
</tr>
<tr>
<td></td>
<td>HÁBITAT: 10</td>
<td>HÁBITAT: 4</td>
</tr>
<tr>
<td>ENTREVISTAS A RESPONSABLES DE RRHH EMPRESAS INDUSTRIALES</td>
<td>AGROALIMENTARIO: 2</td>
<td>AGROALIMENTARIO: 5</td>
</tr>
<tr>
<td></td>
<td>AUTOMOCIÓN: 4</td>
<td>AUTOMOCIÓN: 7</td>
</tr>
<tr>
<td></td>
<td>HÁBITAT: 5</td>
<td>HÁBITAT: 4</td>
</tr>
<tr>
<td>ENTREVISTAS EN STARTUPS O EMPRESAS DE SERVICIOS TI</td>
<td>3 A 6</td>
<td>4</td>
</tr>
</tbody>
</table>

En un primer momento, se estipula seleccionar de 2 a 3 empresas para cada CNAE identificado; sin embargo, dado que el objeto del estudio es analizar a empresas impulsoras, para evitar la discriminación de empresas, se opta por identificar a las empresas con mayor nivel de implantación de tecnología 4.0 de cada sector independientemente de su actividad empresarial (CNAE). Esto afecta especialmente al sector Hábitat, sector con poca tecnificación e implantación, por lo que el número de entrevistas y empresas consultadas es menor del previsto. Es decir, los resultados del estudio son reflejo del propio proceso de digitalización.

Además, la participación de las empresas por sector también es determinante. Debido a todas estas circunstancias, del total de las 47 entrevistas previstas se realizan 44, asimismo de las 43 entidades identificadas (32 empresas impulsoras y 11 organismos empresariales o centros tecnológicos) participan 23 (15 entidades impulsoras y 8 organismos empresariales o tecnológicos). Por lo que los resultados obtenidos tienen el sesgo del nivel de participación de las empresas.
TÉCNICA: Asistencia a Jornadas

Objetivos: obtener información sobre las diferentes oportunidades, avances tecnológicos 4.0, últimas tendencias del mercado tecnológico, estrategias públicas elaboradas para el fomento de digitalización en la Industria española.

Número de jornadas asistidas: 3

3. Data-BeersCyL III. Celebrado el 23 de febrero de 2017 en Salamanca

Para mayor información, en el apartado relativo a Anexos, se incluye un resumen descriptivo de cada jornada.

TÉCNICA: Puntos de Observación

Objetivos: obtener información sobre cómo se está desarrollando la transformación y transición digital de las empresas industriales de Castilla y León, así como conocer los avances tecnológicos 4.0 que demandan las empresas y especialmente, para la detección de empresas industriales impulsoras.

Número de puntos de observación: 8

Este número de entrevistas se dispone en función de las entidades y organismos de innovación tecnológica identificados durante la recopilación documental.

Instrumento: *Guión de Entrevista Semi-estructurada*, Aprox. 1 hora de duración

Diseño: *Muestra Cualitativa e Intencional de organismos y centros mediante los siguientes criterios de selección*

- **Tipo de entidad u organismo tecnológico:** Centro tecnológicos, clúster, parques científicos, fundaciones universitarias, entre otros.
- **Cargo o puesto funcional:** Responsables del área de innovación o de digitalización.
- **Años de experiencia en el puesto:** mínimo de 3 años.
TÉCNICA: ENTREVISTA SEMIESTRUCTURADA DE TRANSFORMACIÓN DIGITAL

Objetivos: Conocer el nivel de madurez de empresas punteras pertenecientes a los sectores objeto de análisis. Asimismo, obtener información relevante sobre las nuevas tecnologías y su implementación dentro de dichos sectores en Castilla y León.

Número de entrevistas: 16

Este número total de entrevistas se distribuyen entre los tres sectores objeto de análisis; Automoción, Agroalimentario y Hábitat. Distribución de entrevistas por Sector.

- Automoción, componentes y equipos: 7
- Agroalimentario: 5
- Hábitat: 4

Instrumento: Guión de Entrevista Semi-estructurada, Aprox. 1 hora de duración

Diseño: Muestra Cualitativa e Intencional de entrevistados mediante los siguientes criterios de selección

- **Cargo o puesto funcional**: profesionales que presentan un alto conocimientos sobre las tendencias tecnológicas y los avances producidos dentro de la empresa.
 - Directores de Digitalización o el área de Ingeniería.
 - Directores o responsables de procesos de Producción.
 - Responsables de I+D+i.

- **Años de experiencia en el puesto**: mínimo de 3 años.

TÉCNICA: ENTREVISTA SEMIESTRUCTURADA A RRHH

Objetivos: Recoger información primaria sobre el empleo y los cambios que las nuevas tecnologías y la digitalización generan en el mismo. Asimismo, obtener información complementaria sobre la formación y las nuevas competencias y conocimientos que se requieren a causa de los cambios tecnológicos detectados en la entrevista de madurez digital.

Número de entrevistas: 16

Este número total de entrevistas se distribuyen entre los tres sectores objeto de análisis; Automoción, Agroalimentario y Hábitat. Distribución de entrevistas por Sector.

- Agroalimentario: 5 (CNAE: 10 y 11).
2. **FASE 2: ANÁLISIS DE LA INFORMACIÓN**

En esta segunda fase del estudio se realiza el análisis de los datos obtenidos en la etapa anterior de búsqueda de información, con la finalidad de obtener conclusiones que permitan alcanzar los objetivos propuestos.

<table>
<thead>
<tr>
<th>Instrumento:</th>
<th>Guion de Entrevista Semi-estructurada, Aprox. 1 hora de duración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseño:</td>
<td>Muestra Cualitativa e Intencional de entrevistados mediante los siguientes criterios de selección</td>
</tr>
<tr>
<td></td>
<td>Cargo o puesto funcional: profesionales en el área de recursos humanos, el cargo o puesto a entrevistar dependerá de la estructura de las empresas, así se seleccionarán a:</td>
</tr>
<tr>
<td></td>
<td>- Responsables o Directores de Recursos Humanos.</td>
</tr>
<tr>
<td></td>
<td>- Técnicos de recursos humanos especializados en la planificación de carreras profesionales.</td>
</tr>
<tr>
<td></td>
<td>Años de experiencia en el puesto: mínimo de 3 años.</td>
</tr>
</tbody>
</table>

| Objetivos: | identificar los nuevos yacimientos de empleo, así como los perfiles que busca en el mercado laboral, ante el avance tecnológico, y los que se prevén necesitar en un futuro próximo. |
| Número de entrevistas: | 4 |
| Este número de entrevistas se distribuye en función de los yacimientos o actividades económicas de innovación identificados durante el trabajo de campo desarrollado. |

Instrumento:	*Guion de Entrevista Semi-estructurada*, Aprox. 1 hora de duración
Diseño:	*Muestra Cualitativa e Intencional de empresas Startups mediante los siguientes criterios de selección*
	Tipo de actividad o servicio externalizado: La selección de los entrevistados se formulará en función del servicio tecnológico que presten a las empresas de los sectores analizados.
	Cargo o puesto funcional:
	- Responsables de empresas de Startup.
	- Responsable del servicio de digitalización.
	Años de experiencia en el puesto: mínimo de 3 años.
3. **FASE 3: OBTENCIÓN DE CONCLUSIONES**

En esta tercera fase del estudio, se presenta el resultado del análisis realizado de los datos obtenidos durante el trabajo de campo. Se establecen conclusiones que indican la situación de las entidades impulsores respecto a la implantación del nuevo paradigma industrial, y aportan información válida para el conjunto de la Industria regional, la administración y, en definitiva para el conjunto de la sociedad castellana y leonesa con el fin último de contribuir a la generación y mantenimiento del empleo.

4. **FASE 4: DEFINICIÓN DE MEDIDAS**

Durante el desarrollo de la fase final, se elabora el presente documento con las principales conclusiones extraídas durante el transcurso del desarrollo de investigación, que permiten ofrecer soluciones y mejoras a este proceso de adecuación que se considera necesario para el desarrollo de la Cuarta Revolución Industrial en Castilla y León, identificando una estrategia conjunta entre entes públicos, organizaciones y empresas, para abordar los posibles problemas generados por estos cambios en los sectores industriales de la región.
II. CONTEXTUALIZACIÓN
II. CONTEXTUALIZACIÓN

Hacia el reto de la transformación digital

“Sí, absolutamente vamos hacia las Smart Cities. La realidad virtual, el internet de las cosas,... las tecnologías están aquí y no van a desaparecer, el que antes se introduzca en la cadena de valor va a crecer”. (Experto en innovación de Centro Tecnológico).

Esta afirmación, en palabras de uno de los expertos consultados, es la que más se repite a lo largo de la información recopilada tanto de forma textual como en la bibliografía revisada.

Ante esta realidad y con el horizonte 2020 puesto en el punto de mira, cabe preguntarse ¿estamos preparados para afrontar el reto que supone la Industria 4.0?

La Industria es uno de los motores de la economía europea, bajo este supuesto, la consultora Roland Berger en el informe “INDUSTRY 4.0: The role of Switzerland within a European manufacturing revolution” erige cuatro tipologías de clústeres, en los que clasifica a los países europeos en función de dos criterios: la aportación de su industria en el PIB nacional y su preparación ante la Industria 4.0 o índice de preparación RB Industry 4.0.

CLÚSTERES EUROPEOS

- **“FRONTRUNNERS” PUNTEROS**
- **“POTENTIALISTS” POTENCIALES**
- **“HESITATORS” VACILANTES**
- **“TRADITIONALISTS” TRADICIONALES**

ESPAÑA
Gráfico 1. Preparación de los Países Europeos.

Fuente: Roland Berger. Pág. 16 “INDUSTRY 4.0 The Role of Switzerland within a European manufacturing revolution.

En el eje vertical se asienta el índice RB de preparación a la Industria 4.0. Dicho indicador mide de forma combinada la excelencia industrial (sofisticación del proceso de producción, grado de automatización, talento disponible en las empresas y la intensidad de la innovación) y la red de valor (alto valor añadido, la apertura de la Industria, la red de innovación y la sofisticación de Internet).

En el horizontal se sitúa el peso de la Industria o la participación de la manufactura en el PIB de cada economía.

La matriz distribuye en cuatro grupos a los principales países industriales de la UE.
1. Países punteros (Frontrunners), en el que lidera Alemania, con alta aportación de la Industria en su PIB y unas condiciones de tecnología muy modernas orientadas hacia el futuro con una excelente preparación para la Industria 4.0.

2. Países potenciales (Potentialists), entre los que se encuentran Francia y el Reino Unido con una industria debilitada en los últimos años, presentan menor peso de la Industria en el PIB, pero con una gran capacidad innovadora y altos niveles de preparación a la Industria 4.0, por lo que son un gran potencial ante los nuevos mercados que se abren.

3. Países tradicionales (Traditionalists), hace referencia a los países de Europa del Este, con una industria sólida, pero apenas presentan iniciativas para llevar la Industria a la próxima era.

4. Países vacilantes (Hesitators), entre los que se sitúa España, presentan menor peso de la Industria en su PIB que el resto de los países europeos y con baja preparación hacia la Industria 4.0, carecen de una base industrial segura.

El informe deja patente las diferencias existentes entre los países europeos ante la transformación digital y, sostiene la necesidad de trazar desde Europa, una hoja de ruta compartida hacia la Industria 4.0, con objetivos comunes dado que considera que está bien posicionada para asumir conjuntamente los nuevos retos de la evolución tecnológica, especialmente por los países potenciales y punteros.

Bajo este prisma, España necesita afianzar e incrementar su industria y para ello se ha de apostar por la innovación, por estar preparados para los nuevos desafíos que conllevan la economía digital y la transformación de la Industria Conectada. Por lo que, se hace imprescindible, desde el gobierno, administraciones regionales, instituciones públicas y privadas y las empresas, seguir actuando y desarrollar estrategias para superar los gaps existentes hacia el progreso.
Castilla y León ante el paradigma de la digitalización

Es necesario alcanzar una industria competitiva y sostenible, reforzada por un entorno digital innovador, y ha de hacerse ya mismo, de forma inmediata debido a aceleración de la innovación y la velocidad de la transformación digital. Este es el momento de tomar decisiones y de actuar, esta necesidad se extrapola a nuestra Comunidad.

Tomando como referencia los dos indicadores analizados que establece Roland Berger (peso de la Industria en el PIB y preparación hacia la 4.0), la Industria en Castilla y León, constituye el segundo motor de crecimiento económico para la región, aportando el 21% del PIB regional. Estando 3 puntos por encima de la media nacional.

Gráfico 2. Porcentaje de aportación sectorial al PIB, 2016

No obstante, el tejido industrial regional se caracteriza por su falta de diversificación. Su desarrollo depende esencialmente del comportamiento de dos ámbitos productivos: el de Automoción y el Agroalimentario. Ambos aglutinan la mayor parte de la producción y del empleo, condicionando así las posibilidades del progreso y del futuro industrial de la región.

Gráfico 3. Producción sectorial de la Industria manufacturera.

<table>
<thead>
<tr>
<th>CNAE-09</th>
<th>AGRUPACIONES (CNAE-09)</th>
<th>AÑO 2015</th>
<th>Cifra de ventas (Miles de Euros)</th>
<th>% sobre Total Industria Manufacturera</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-11-12</td>
<td>Alimentación, bebidas y tabaco (Agroalimentario)</td>
<td>2015</td>
<td>7.823.530</td>
<td>28,04</td>
</tr>
<tr>
<td>13-14</td>
<td>Textil y confección</td>
<td></td>
<td>112.490</td>
<td>0,40</td>
</tr>
<tr>
<td>15</td>
<td>Cuero y Calzado</td>
<td></td>
<td>5.441</td>
<td>0,02</td>
</tr>
<tr>
<td>16</td>
<td>Madera y corcho</td>
<td></td>
<td>511.793</td>
<td>1,83</td>
</tr>
<tr>
<td>17-18</td>
<td>Papel, artes gráficas y reproducción de soportes grabados</td>
<td></td>
<td>669.636</td>
<td>2,40</td>
</tr>
<tr>
<td>19-20-21</td>
<td>Coquerías, refino, químicas y productos farmacéuticos</td>
<td></td>
<td>1.306.966</td>
<td>4,68</td>
</tr>
<tr>
<td>22</td>
<td>Manufacturas de caucho y plástico</td>
<td></td>
<td>1.972.687</td>
<td>7,07</td>
</tr>
<tr>
<td>23</td>
<td>Productos minerales no metálicos</td>
<td></td>
<td>818.262</td>
<td>2,93</td>
</tr>
<tr>
<td>24</td>
<td>Producción, 1ª transformación y fundición de metales</td>
<td></td>
<td>823.859</td>
<td>2,95</td>
</tr>
<tr>
<td>25</td>
<td>Productos metálicos</td>
<td></td>
<td>1.512.689</td>
<td>5,42</td>
</tr>
<tr>
<td>26-27</td>
<td>Productos informáticos, electrónicos, ópticos y eléctricos</td>
<td></td>
<td>659.179</td>
<td>2,36</td>
</tr>
<tr>
<td>28</td>
<td>Maquinaria y equipo</td>
<td></td>
<td>1.083.116</td>
<td>3,88</td>
</tr>
<tr>
<td>29-30</td>
<td>Material de transporte (Automoción)</td>
<td></td>
<td>8.165.840</td>
<td>29,27</td>
</tr>
<tr>
<td>31-32</td>
<td>Muebles y otras industrias manufactureras</td>
<td></td>
<td>98.976</td>
<td>0,35</td>
</tr>
<tr>
<td>33</td>
<td>Reparación e instalación de maquinaria y equipo</td>
<td></td>
<td>352.627</td>
<td>1,26</td>
</tr>
<tr>
<td>35</td>
<td>Producción de Energía Eléctrica, Gas y Vapor</td>
<td></td>
<td>1.984.409</td>
<td>7,11</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>27.901.500</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: INE. Encuesta Industrial Anual de Productos (EIAP), 2015.
Por ello, es imprescindible fortalecer otras áreas económicas de la Industria, aumentar su productividad mejorando los procesos productivos, mediante la incorporación de avances tecnológicos y de capital humano preparado, a fin de favorecer su capacidad de expansión y competitividad en el mercado.

Para valorar en qué nivel competitivo se asienta Castilla y León, partimos del Índice de Competitividad Regional (RCI) elaborado por la Comisión Europea. Este indicador (RCI) es la ponderación de una serie de variables que miden la capacidad competencial de una economía, (variables que se identifican en el gráfico), por lo que evalúa en qué situación se localiza una región frente a otras en cuanto a innovación, preparación tecnológica, instituciones públicas, transporte e infraestructura digital, medidas en sanidad y el capital humano.

Gráfico 4. Índice de competitividad regional, 2016

De forma global Castilla y León con un RCI de 36,783 puntos, está a un nivel de competitividad similar que el de España (RCI 36,579 puntos) y considerablemente inferior con respecto a Europa (RCI 55 puntos).

El gráfico muestra que la región está posicionada por debajo de la media europea en casi todas las pilasres que miden la competitividad, excepto en el ámbito de la sanidad y de la educación básica, motores esenciales para cualquier economía.

Sin embargo, a medida que las economías evolucionan hacia el progreso adquieren mayor relevancia otros factores relacionados con el mercado laboral, el potencial del capital humano y especialmente la tecnificación. De este modo, tanto en Castilla y León como en España, las empresas carecen del grado de sofisticación e innovación que la media europea y se presenta un mercado laboral menos eficiente y de menor tamaño.

Son en estos aspectos donde se han de centrar principalmente, desde la Industria como uno de los pilares económicos regionales, las medidas e iniciativas que se vertebren hacia la competitividad por la administración y el conjunto de agentes sociales de la región.

En cuanto a la preparación tecnológica de Castilla y León, también nos situamos en una posición inferior. A través del presente estudio se va a analizar algunos de los indicadores que tanto Roland Berger como la Comisión Europea, establecen fundamentales para medir la posición en la que nos situamos hacia la Industria 4.0, como es el talento disponible en el mercado laboral, las variaciones del mismo o el grado de innovación implantado en las empresas impulsoras.

Por lo que en las propuestas finales, se da respuesta a las necesidades y gaps que se identifican más adelante, con objeto de contribuir a configurar un escenario favorable para la incursión en nuestra región de una industria digitalizada.
III. IMPLANTACIÓN EN CASTILLA Y LEÓN
III. IMPLANTACIÓN EN CASTILLA Y LEÓN

Madurez digital

El trabajo de campo realizado en el presente estudio, ha permitido posicionar a cada sector analizado dentro de la adaptación que se ha realizado de la Matriz de Madurez Digital desarrollada por la Consultora Roland Berger. En ella se puede observar el grado de madurez (disponible/emergente/futura) en base a la tecnología implantada en las diferentes partes que se identifican en el proceso de fabricación: Concepción Producto/Proceso, Gestión de la Producción (máquinas, trazabilidad y flujos), Fabricación, Explotación y Organización del Trabajo.

Gráfico 5. Modelo adaptado de Matriz de Madurez Digital.
El sector Automoción destaca por encima del resto en casi todos los aspectos, siendo el sector donde se encuentran las empresas impulsoras con un mayor grado de madurez digital, posicionándose en muchas de las áreas de análisis por encima de la media de la Industria de Castilla y León. No se puede obviar que este sector se caracteriza por ser impulsor del desarrollo tecnológico y un referente en cuanto a innovación, no solo en la región con la implantación de multinacionales, que siguen su propia dinámica de progreso, siendo algunas nacidas en la región, sino que este sector también es impulsor a nivel mundial. Por otro lado, tanto el sector Hábitat como el sector Agroalimentario muestran altos niveles de madurez digital en algunos campos, incluso superando al sector Automoción en alguno de ellos; sin embargo, se encuentran en niveles bajos en áreas importantes que precisan de un esfuerzo por parte de las empresas impulsoras, para posicionarse en niveles de madurez digital más elevados y servir como modelo de desarrollo de negocio al resto de empresas industriales que quieran involucrarse en el cambio hacia la Digitalización.
CONCEPCIÓN PRODUCTO/PROCESO EN LAS EMPRESAS INDUSTRIALES IMPULSORAS.

El diseño se ha convertido en los últimos años en una de las partes más importantes del proceso productivo, no solo en lo que al producto se refiere, sino también para los procesos, donde un diseño eficiente puede aportar calidad y eficacia a la producción.

El diseño de nuevos productos es trascendental para la estabilidad de las empresas, ya que la competitividad en los mercados es cada vez más creciente, y los clientes buscan productos diferenciadores y de calidad. Un buen diseño, no solo del producto final, sino del proceso de fabricación, donde la flexibilidad y la precisión ligadas a la eficiencia son cada vez más relevantes, lo que puede mejorar sustancialmente la competitividad de los productos y aumentar la productividad, creando una imagen de marca reconocible en los diferentes mercados internacionales.

Gráfico 7. Uso de tecnologías aplicables al Diseño del Producto/Proceso en la Industria.
Las tecnologías aplicables al proceso de diseño más implantadas en la Industria de Castilla y León son el “diseño asistido por ordenador” y la “ingeniería asistida por ordenador”, donde alrededor de la mitad de las empresas impulsoras manifiestan su actual uso. Por debajo estarían la “simulación de procesos” y la “gestión del ciclo de vida del producto”, y con un nivel bajo de implementación estaría la “fábrica virtual digitalizada”, lo cual representa el nivel más alto de madurez digital en la actualidad.

Existe en la Industria de la región un camino largo por recorrer en esta área, donde la aparición de nuevos programas y métodos permiten dar un salto tecnológico que acerque a las empresas impulsoras a niveles altos de digitalización, convirtiéndose en ejemplo para el resto del tejido industrial.

Gráfico 8. Uso de tecnologías aplicables al Diseño del producto/proceso en el Sector Agroalimentario.

Gráfico 8. Uso de tecnologías aplicables al Diseño del producto/proceso en el Sector Agroalimentario.

- Diseño asistido por ordenador (CAO/CAD).
- Ingeniería asistida por ordenador (IAO/CAE).
- Gestión del ciclo de vida del producto (PLM).
- Simulación digital de procesos.
- Fábrica virtual digitalizada.
Las empresas impulsoras en el sector Agroalimentario de Castilla y León muestran un escaso grado de implantación de las tecnologías aplicables en el proceso de diseño, posicionándose en un nivel bajo de madurez digital. Los porcentajes más elevados de uso de tecnologías se sitúan en el “diseño e ingeniería asistidos por ordenador”, y en un segundo nivel están la “gestión del ciclo de vida del producto” y la “simulación de procesos”, con una baja implementación en el sector. La “fábrica virtual” aún no se ha concebido en ninguna de las empresas impulsoras, lo cual posiciona al sector en un nivel intermedio en lo que respecta al proceso de Diseño del Producto/Proceso.

Las posibilidades que ofrecen estas tecnologías vinculadas al proceso de Diseño para la mejora de la producción y la calidad en los procesos de fabricación, son para este sector una gran oportunidad para seguir creciendo a través de la innovación, alcanzando niveles de digitalización más elevados a los observados actualmente.

Gráfico 9. Uso de tecnologías aplicables al Diseño del producto/proceso en el Sector Hábitat.
Las empresas impulsoras del sector Hábitat de la región muestran un nivel alto de madurez digital en ciertos aspectos del proceso de diseño, destacando la implantación de un modelo de “fábrica virtual digitalizada”, lo que puede servir de impulso y ejemplo al resto de empresas de este sector, duramente castigado por la crisis económica.

Cabe destacar la no utilización de la “gestión del ciclo de vida del producto”, un procedimiento que permite mejorar notablemente los procesos de gestión y organización de los recursos dentro de la empresa, y que se sitúa en un paso intermedio dentro del camino hacia la digitalización.

El sector Automoción se caracteriza por ser uno de los más avanzados en esta materia, por ello, las empresas impulsoras muestran niveles elevados de integración de estas tecnologías, lo que las sitúa en un grado de madurez digital muy alto, a pesar de que ninguna de ellas haya puesto en marcha todavía un proceso de desarrollo de la “fábrica virtual digitalizada”.
Algunas de las empresas impulsoras de los sectores Automoción y Hábitat muestran niveles muy altos de madurez digital, lo cual puede hacer efecto “empuje” para el resto de la Industria. Por otro lado, aunque en el sector Agroalimentario se observa un nivel intermedio de madurez digital en las empresas impulsoras, la posibilidad de crecer a través de la implantación de este tipo de tecnologías vinculadas a los procesos de diseño se convierte en una oportunidad irrechazable, que de igual modo servirá de modelo para el resto de empresas de este sector estratégico en Castilla y León.

GESTIÓN DE LAS MÁQUINAS EN LAS EMPRESAS INDUSTRIALES IMPULSORAS.

La gestión de las máquinas es uno de los campos donde mayores posibilidades ofrece la conectividad que propone el proceso de Digitalización. Las empresas impulsoras de Castilla y León muestran un grado de madurez medio-alto en este campo, aunque existen diferencias entre sectores que denotan un uso desigual de las tecnologías.

Gráfico 11. Uso de tecnologías aplicables a la Gestión de las Máquinas en la Industria.

- Mando numérico.
- Gestión a distancia.
- Sistema de Ejecución de Manufactura (MES).
- Aplicaciones móviles.
Las empresas impulsoras del sector Agroalimentario de Castilla y León se posicionan en un estado de implantación similar al de la media, con un uso levemente superior de los “sistemas de ejecución de manufactura (MES)” y de “aplicaciones móviles”, aunque con un menor desarrollo de la “gestión a distancia”. Esto hace posicionarse al sector en un nivel intermedio de madurez en este campo.
En el sector Hábitat destaca el uso de la “gestión a distancia” por parte de las todas las empresas impulsoras del sector, aunque ninguna de ellas utiliza “sistema de ejecución de manufactura (MES)”.

Esta información recogida de las empresas impulsoras posiciona al sector en un alto grado de madurez digital en lo que a la gestión de las máquinas se refiere, principalmente impulsado por una empresa que se ha convertido en un ejemplo, no solo en el sector, sino para toda la Industria de Castilla y León.
Gráfico 14. Uso de tecnologías aplicables a la Gestión de las Máquinas en el Sector Automoción.

Por su parte, el sector Automoción muestra unos niveles de aplicación de tecnologías vinculadas a la gestión de las máquinas muy similares a los ofrecidos por el conjunto de la Industria. Las empresas impulsoras de este sector se posicionan en un nivel alto de madurez digital, aunque las oportunidades de crecimiento tecnológico en esta área son grandes, convirtiéndose en una oportunidad para la innovación y el desarrollo de procesos productivos más eficientes.

GESTIÓN DE LA TRAZABILIDAD EN LAS EMPRESAS INDUSTRIALES IMPULSORAS.

La trazabilidad dentro de la cadena de producción se ha convertido en uno de los procesos de mayor desarrollo dentro de la Industria, convirtiéndose en una fuente de información sobre el producto que permite conocer el estado de este y mejorar notablemente los procesos vinculados a la fabricación a través de la implantación de nuevas tecnologías. La conectividad cobra aún mayor sentido en esta área, permitiendo conocer en tiempo real todo aquello relacionado con el proceso de producción dentro de las empresas mediante el seguimiento de los productos.
Gráfico 15. Uso de tecnologías aplicables a la Gestión de la Trazabilidad en la Industria.

Tanto el “seguimiento de lotes” y el “seguimiento unitario” tienen altos niveles de implantación en las empresas impulsoras de Castilla y León, aunque el salto hacia la digitalización aun es menor, tan solo la mitad de las empresas impulsoras entrevistadas tienen implantado o desarrollan procesos vinculados a “internet de las cosas”, lo que posiciona a la región en un nivel medio de madurez en lo que se refiere a la aplicación de tecnologías vinculadas a la trazabilidad dentro del proceso de producción.

Gráfico 16. Uso de tecnologías aplicables a la Gestión de la Trazabilidad en el Sector Agroalimentario.
El sector Agroalimentario se posiciona por debajo de la media de la Industria en este aspecto, con niveles de implantación de “seguimiento unitario” en torno a 8,0 puntos, y con solo 4,0 puntos en la implantación de “internet de las cosas” para realizar un seguimiento de los productos dentro del proceso de producción en las empresas impulsoras del sector.

Gráfico 17. Uso de tecnologías aplicables a la Gestión de la Trazabilidad en el Sector Hábitat.

Las empresas impulsoras de Hábitat muestran un grado de madurez más elevado en lo que se refiere a la trazabilidad, siendo el sector que mejores resultados ofrece en este apartado, lo que muestra el esfuerzo realizado por este sector para mejorar los procesos de producción y recuperarse después de haber sido duramente castigado por la crisis.
El sector Automoción también se sitúa en niveles elevados de madurez digital en el área de trazabilidad, posicionándose las empresas impulsoras del sector por encima de la media, y a un nivel muy parecido a ofrecido por las empresas del sector Hábitat.

Las posibilidades que ofrece el “internet de las cosas” para esta área aún están por desarrollarse en la Industria de Castilla y León, por lo que apostar por un mayor grado de digitalización en los procesos de trazabilidad puede ser una oportunidad de crecimiento para las empresas de la región.

GESTIÓN DE LOS FLUJOS EN LAS EMPRESAS INDUSTRIALES IMPULSORAS.

La logística se ha convertido en una de las áreas donde mayor desarrollo tecnológico ofrecen las tecnologías vinculadas a la digitalización. La optimización de la cadena de suministro viene de la mano de lo que se ha denominado “Logística 4.0”, garantizando que la producción sea más personalizada, la gestión de los envíos se realice de forma más eficiente en función de las previsiones de demanda, una reducción de los stocks y del almacenaje, optimización en las rutas, sistemas de geolocalización y conocimiento de la ubicación y trazabilidad de la mercancía.
Actualmente, las empresas impulsores de la Industria de Castilla y León muestran niveles muy dispares de madurez digital en los que a la gestión de la logística se refiere, existiendo empresas con un alto uso de tecnologías aplicables a la gestión de los flujos a la par que otras se posicionan en niveles de madurez medio-bajos, lo que coloca al conjunto de la región en una zona intermedia dentro de la Matriz de Madurez Digital elaborada por la Consultora Roland Berger.

Como se ha comentado, la logística es una de los procesos dentro de las empresas industriales donde mayores posibilidades de desarrollo ofrece la llegada de la Cuarta Revolución Industrial, por lo que los departamentos vinculados a esta área están cobrando un mayor protagonismo debido a sus potencialidades tanto en la logística interna como en la externa.
Las empresas impulsoras del sector Agroalimentario muestran un nivel de madurez intermedio, muy similar al presentado para el conjunto de la Industria, aunque con una menor implantación de la “gestión de la producción asistida por ordenador”, donde solo el 20% de las empresas entrevistadas afirman utilizarlo.

El sector Hábitat muestra un grado de madurez muy bajo en la gestión de los flujos, donde un tercio de las empresas impulsoras tienen implantado un proceso de “informatización del flujo de órdenes” y “uso de balizas o etiquetas electrónicas”.

Por otro lado, muestran un nivel alto de implantación en lo que se refiere a la “gestión de la producción asistida por ordenador”, en un nivel por encima al recogido para el conjunto de la Industria de Castilla y León.
Las empresas impulsoras del sector Automoción reflejan altos niveles de digitalización, muy por encima de lo observado para el conjunto de la Industria, lo que posiciona al sector en unos niveles de madurez digital muy elevados en lo que se refiere a la gestión de los flujos. Las empresas consultadas manifiestan utilizar casi todas las tecnologías vinculadas a esta área dentro de la gestión de la producción, siendo la tecnología menos utilizada las "balizas o etiquetas electrónicas" donde su grado de implantación se posiciona en 6,0 puntos.
Las tecnologías relacionadas con el proceso de fabricación ofrecen una mejora de la precisión y de la flexibilidad, lo que aumenta de forma sustancial la eficiencia y la calidad dentro del proceso de fabricación de las empresas. Esto permite avanzar en la concepción de los productos y en la personalización hacia el cliente, uno de los estandartes del proceso de digitalización de los centros de trabajo.
La implantación de tecnologías y procesos vinculados a la Fabricación muestra un grado dispar en las empresas impulsoras de Castilla y León. Se encuentran niveles altos de implantación, alcanzando los 9,2 puntos en lo que se refiere a la “integración y mantenimiento de máquinas en interno”, y superando más del 6,0 puntos procesos como “la reactuación de programas y/o modificación de utillajes” o el uso de “máquinas multiproducto/multibrocha” y “máquinas inteligentes”; pero también se observa un bajo nivel de integración de “robótica colaborativa” e “impresión 3D” en los procesos de fabricación. Las empresas impulsoras de la región se posicionan en un nivel intermedio de madurez digital en lo que se refiere a la implantación de tecnologías y procesos asociados a la fabricación.
Las empresas impulsoras del sector Agroalimentario se encuentran en un nivel de madurez medio, con unos porcentajes de utilización de las tecnologías asociadas a la fabricación muy similares a la media de las empresas consultadas, aunque un punto por debajo en algunos aspectos.

Destacan como tecnologías o procesos más implantados la “integración y mantenimiento de máquinas en interno” y las “máquinas multiproducto/multibrocha”.

Por encima de 6,0 puntos también destaca la “implantación inicial o reubicación de medios de fabricación”, “reactuación de programas y/o modificación de utillajes” y “uso de máquinas inteligentes”, lo que contribuye en gran medida a obtener procesos de fabricación flexibles y con un mayor grado de precisión.
El sector Hábitat es el que se posiciona en un nivel más bajo de madurez digital en el proceso de fabricación, sobre todo en lo relacionado con las tecnologías asociadas con la precisión, donde las empresas impulsoras se encuentran en un nivel muy inferior.

Este hecho abre la posibilidad de mejorar en este aspecto, convirtiéndose en una oportunidad para alcanzar una mayor calidad en los procesos de fabricación, mejorando la competitividad del sector de la región en los mercados internacionales.

Por su parte, las empresas del sector Automoción muestran un mayor uso de tecnologías asociadas a este proceso, por encima de lo observado para el conjunto de la Industria de Castilla y León, lo que garantiza tener procesos de fabricación más flexibles y precisos, pudiendo ofrecer un producto más personalizado hacia el cliente.
MANTENIMIENTO EN LAS EMPRESAS INDUSTRIALES IMPULSORAS.

El uso de las tecnologías asociadas al mantenimiento, muestra al igual que otras áreas una alta desigualdad entre las empresas impulsoras consultadas, presentando una implantación dispar entre los sectores analizados. El nivel de madurez en relación al mantenimiento se encuentra en un punto medio, donde el “mantenimiento predictivo” y el uso de “autómatas reprogramables” son las tecnologías con mayor grado de implantación. El resto de tecnologías están implantadas en menos de la mitad de las empresas impulsoras de la Industria de la región.

El mantenimiento cobra especial relevancia con la Cuarta Revolución Industrial, pues la previsión de un aumento de robotización y automatización de procesos aumentará notablemente la importancia del mantenimiento y las posibilidades que ofrecerá a la Industria.
El uso de tecnologías vinculadas al mantenimiento permite adelantarse y prever posibles fallos en el proceso de producción de las empresas, algo que se está utilizando de forma mayoritaria dentro de las empresas impulsoras de la región, pero de un modo “básico”, pudiéndose aprovechar más esta tecnología desarrollando el “telemantenimiento”, “el análisis de datos” y “la gran reparación”, lo que permitiría a las empresas de la región ahorrar gastos de reparación y optimizar la producción.

Las empresas impulsoras del sector Agroalimentario muestran un bajo nivel de madurez en el área de mantenimiento, aunque todas las empresas manifiestan el uso del “mantenimiento predictivo”, destacar que este se realiza en una fase “básica”, pues las respuestas negativas obtenidas sobre el uso de “Big Data” y “telemantenimiento”, hacen que ese “mantenimiento predictivo” no pueda catalogarse como avanzado.
Por otra parte, el alto porcentaje de uso de “autómatas reprogramables” en el sector Agroalimentario muestra el esfuerzo realizado en este ámbito, aunque no se puede considerar que se encuentre este sector en un nivel alto de madurez digital, posicionándose más bien en una fase intermedia.

El sector Hábitat se encuentra en una posición intermedia similar, aunque con un uso de tecnologías por parte de las empresas impulsoras más proporcional, donde encontramos la utilización de “Big Data” y “telemantenimiento”, aunque en bajos niveles. Las empresas del sector Hábitat deben hacer un esfuerzo en este campo, pues como hemos visto, el mantenimiento cobra especial relevancia con la Cuarta Revolución Industrial, convirtiéndose en una oportunidad de crecimiento.
Por último, el “mantenimiento predictivo” es algo que se realiza desde hace tiempo en el sector Automoción, lo que se constata con el alto porcentaje de respuestas afirmativas obtenidas en casi todas las tecnologías por parte de las empresas impulsoras consultadas. Este sector se posiciona por encima de la media en el uso de estas tecnologías, donde destaca un alto uso del “Big Data” y “telemantenimiento”.
La última pata del proceso de producción, pero no la menos importante, es la que hace referencia a la organización del trabajo. Cada vez se valora más a trabajadores con competencias para el trabajo en equipo, con altas capacidades de organización y responsabilidad, y desde las empresas se están poniendo en marcha programas de capacitación que pretenden facultar a los trabajadores, dándoles un mayor empoderamiento en la toma de decisiones.
Las empresas impulsoras de la Industria de Castilla y León se posicionan en un nivel intermedio de madurez, donde el “lean manufacturing” tiene un alto grado de implantación, pero donde la “organización autónoma: autoformadora y responsable” se encuentra en un punto inicial de implantación.

Las respuestas de las empresas impulsoras que afirman tener implantados este tipo de procesos a la hora de realizar la organización del trabajo hace que solo se alcance una puntuación de 3,1. Esta es una de las áreas donde se observa un nivel más bajo de madurez en lo que se refiere al camino hacia la digitalización de las empresas impulsoras de la Industria de Castilla y León.
El sector Agroalimentario muestra un grado de implantación muy similar al observado a la Industria en su conjunto, aunque con puntuaciones inferiores en los tres procesos analizados: "especialización de tareas", "lean manufacturing" y "organización autónoma".

Las empresas del sector Hábitat no han apostado aún por proceso de "organización autónoma", lo que les posiciona en un nivel bajo de madurez en este ámbito, a pesar de existir un alto número de empresas impulsoras que tienen implantados procesos de "lean manufacturing" y contar todas con una "especialización de tareas".
Gráfico 33. Uso de tecnologías aplicables a la Organización del Trabajo en el Sector Hábitat.

El sector Automoción se posiciona muy por encima de la media, aunque el grado de madurez aún no se puede considerar alto. Las empresas impulsoras de este sector apuestan claramente por procesos de organización del trabajo más empoderadores, donde el “lean manufacturing” es algo implantado en todas ellas, y donde más de la mitad afirman tener una “organización autoformadora y responsable”.

Gráfico 34. Uso de tecnologías aplicables a la Organización del Trabajo en el Sector Automoción.
Está claro que el camino por recorrer hacia la madurez digital por parte de las empresas impulsoras de la Industria de Castilla y León aún es largo, pero esta situación debe verse como una oportunidad para crecer y crear un tejido empresarial más competitivo en los mercados. Las posibilidades que ofrecen las tecnologías asociadas a la Digitalización de la Industria son infinitas, y las empresas impulsoras cobran vital importancia como motor del resto de empresas de la Industria de la región.

Las tecnologías acabarán llegando a todos, al igual que sucedió en otros momentos de la historia, pero el decidir cuándo implementarlas y el saber cómo utilizarlas es una decisión que cuanto antes se tome puede acarrear muchos beneficios, no solo para las empresas, sino para la sociedad en todo su conjunto.

Convertir al tejido empresarial de Castilla y León en una referencia con respeto a la digitalización de los procesos de producción puede acarrear beneficios económicos, laborales y sociales que contribuyan al bienestar de los habitantes de la región, y mitiguen los impactos negativos que puedan producirse en el mercado laboral con la llegada de la Cuarta Revolución Industrial.
Gap de penetración digital

La Industria de Castilla y León se sitúa en algunos campos del proceso productivo con un nivel de madurez digital medio-alto, aunque siguen existiendo deficiencias en aspectos importantes del proceso de producción que deben cubrirse para alcanzar un grado de madurez digital que permita a las empresas impulsoras de la Industria de la región dar el salto de calidad para ser lo suficientemente competitivas en los mercados internacionales.

“Debido al tejido industrial de la región, las empresas más punteras están apostando fuertemente en el último año en plantear su estrategia y desarrollar algunas de las tecnologías de la Industria 4.0, sobre todo en el área IT. El resto de tecnologías de forma más comedida, con soluciones a nivel de proyecto piloto, de testeo de posibles soluciones más transversales para todas las instalaciones, con el fin de conocer su funcionamiento y su posible aplicación, como es el caso de la fabricación aditiva, la robótica o la realidad virtual/aumentada”. (Director de Centro Tecnológico de Castilla y León).

Está claro que todas las empresas no pueden ir al mismo ritmo, por ello cobran mayor importancia las empresas impulsoras como motor del crecimiento del uso de tecnologías más innovadoras en el resto del tejido empresarial.

“Hay empresas que se han adelantado a esa Industria 4.0, han comenzado a invertir en tecnología, están trabajando en proyectos de I+D y están esforzándose no solo en la reducción de gastos de personal sino en mejorar su productividad, sin embargo hay otras empresas que están cómodas en su zona de confort y les cuesta mucho salir”. (Director de Centro Tecnológico de Castilla y León).

“El problema no es que vengan máquinas, sino que si no somos capaces de asimilarlo las empresas desaparecen ese es el problema más grande (...) Han de saber adaptar la tecnificación y a la customización o flexibilización de la producción, hay que reaccionar rápido o el cliente se nos va”. (Responsable Innovación Empresa Precursora).
Las empresas más reticentes deben entender que invertir en I+D y apostar fuertemente por el proceso de digitalización es de vital importancia para sobrevivir en un mundo global y conectado, que avanza a ritmos tan rápidos que el que se quede atrás corre el riesgo de desaparecer.

“Escucho a clientes que están retornando productos a Galicia o a Castilla y León desde Tánger o China, porque tienen una madurez de la gestión de la producción y unas tecnologías que están desarrollando ellos que compiten contra otros que están más retrasados, por lo que la tecnología es una arma de competitividad y lo que hay que hacer es apostar, no tenerle miedo”. (Responsable Innovación Empresa Precursora).

El camino por recorrer hacia la plena madurez digital debe enfocarse en cubrir el espacio que separa a las empresas impulsoras para implantar las tecnologías más avanzadas de forma plena, y que ello sirva de impulso para el resto de empresas de cada uno de los sectores, contribuyendo a crear una estrategia que aúne los esfuerzos de todos los agentes implicados en el proceso de digitalización que nos propone la llegada de la Cuarta Revolución Industrial.

El Gap o Brecha hacia la Digitalización que muestra la Industria de Castilla y León se ha calculado a partir de la información obtenida de las entrevistas realizadas en las empresas impulsoras, lo cual nos muestra en qué posición (de 0 a 10) se encuentran en su camino hacia la plena digitalización según las variables identificadas a partir de la Matriz de Roland Berger adaptada para este estudio, donde el 10 es la plena madurez.

A continuación se presentan los gráficos que muestran el Gap de penetración de la Industria en general, y de cada uno de los sectores analizados, lo cual permite identificar los puntos de crecimiento que aún deben desarrollar las empresas impulsoras de la Industria de Castilla y León en relación al uso de las tecnologías vinculadas a cada uno de las áreas identificadas en la Matriz de Madurez Digital, es decir, el Gap muestra los puntos que deben cubrirse para alcanzar el 10, la plena madurez digital.
Los procesos donde se manifiesta una mayor aplicación de tecnologías vinculadas a la digitalización, y por tanto, donde menor Gap se presenta, son aquellas áreas vinculadas a la Gestión de la Producción: máquinas, trazabilidad y flujos, aunque esta última con una mayor brecha digital.

Por el contrario, las áreas con mayor Gap de penetración son Organización del Trabajo y Concepción Producto/Proceso (Diseño), no obstante la media mostrada por las empresas impulsoras se sitúa en niveles altos de madurez digital en estos procesos, por lo que cabe afirmar que, en general, de media las empresas impulsoras de la Industria de la región alcanzan un grado medio-alto de madurez digital en todos los procesos de la matriz.
Las empresas impulsoras de la Industria de Castilla y León deben recorrer aún un largo camino hacia la plena digitalización de los procesos de producción, lo que permitirá alcanzar mayores niveles de productividad y calidad en los mismos, posicionándose de este modo a la vanguardia del cambio que ya se otea en el horizonte.

Gráfico 36. Gap de penetración de las empresas impulsoras del Sector Agroalimentario

Las empresas impulsoras del sector Agroalimentario de Castilla y León muestran unos niveles de madurez en algunas áreas del proceso productivo que se sitúan en niveles medios dentro de la matriz. Los procesos donde existe un mayor Gap de penetración para la implantación de las tecnologías identificadas son Concepción Producto/Proceso y Organización del Trabajo, seguidas de las áreas vinculadas a la Fabricación. Aquellos procesos con un mayor grado de Madurez dentro del sector Agroalimentario son la Explotación/Mantenimiento y la Gestión de Máquinas, donde el Gap se sitúa en 2 puntos. La brecha hacia la plena digitalización es amplia en las empresas impulsoras en este sector, posicionándose en todas las áreas por debajo de la media de la matriz calculada para la Industria de Castilla y León.
Por la importancia que tiene este sector para la región, es crucial que las empresas de Agroalimentación apuesten por la Digitalización como un motor de expansión, haciendo especial hincapié en potenciar las áreas donde se refleja un mayor Gap de penetración para estas tecnologías, mejorando de este modo la competitividad en los mercados.

Gráfico 37. Gap de penetración de las empresas impulsoras del Sector Hábitat

Las empresas impulsoras del sector Hábitat son las que mayor irregularidad muestran en la aplicación de las tecnologías vinculadas a la digitalización, existiendo un Gap de penetración dispar entre las diferentes áreas del proceso de producción. Por un lado, se observan áreas, como Gestión de las Máquinas y la Trazabilidad, donde el nivel de madurez digital es muy alto en las empresas impulsoras, existiendo un gap nulo o muy bajo para la implementación de las tecnologías identificadas, posicionándose por encima de la media de la Industria. Pero por otro lado, existe un nivel de implementación de tecnologías medio, o incluso bajo, en otras áreas como la Organización del Trabajo, la Gestión delos Flujos y aquellas vinculadas a la Fabricación.
El sector Hábitat, que fue duramente castigado durante la crisis por su vinculación directa con la Construcción, debe apostar por la digitalización como medida de avance y crecimiento, siguiendo el ejemplo de las empresas impuloras en este sector, que aunque de forma dispar, muestran una apuesta por estas tecnologías como medida para mejorar los procesos productivos, apostando por la calidad y la conectividad.

Gráfico 38. Gap de penetración de las empresas impuloras del Sector Automoción

El sector Automoción se ha mostrado como el sector más fuerte de la Industria, y es por ello que el nivel de madurez digital mostrado por las empresas impuloras es alto, posicionándose por encima de la media de la Industria en todos los procesos analizados dentro de la Matriz de Madurez Digital. El gap de penetración para las tecnologías es muy bajo en este sector, principalmente en áreas vinculadas al Gestión de la Producción y en la Organización del Trabajo, así como en la Precisión dentro de la Fabricación, donde la totalidad de las empresas consultadas manifiesta el uso de tecnologías vinculadas a este proceso. En el resto de áreas, aunque en menor medida, el grado de implementación de tecnologías se sitúa en el nivel alto de madurez.
Aunque el sector Automoción muestre un nivel de madurez alto, posicionándose las empresas impulsoras de este sector dentro del apartado de las precursoras, el ritmo de avance de la Cuarta Revolución Industrial es rápido, por lo que estas empresas no deben rezagarse ni ser perezosas a la hora de realizar el último esfuerzo hacia la madurez digital, puesto que lo que hoy es el nivel más alto, quizás mañana ya no lo sea.
Obstáculos

Los obstáculos que se divisan en las empresas castellanas y leonesas impulsoras a la hora de enfrentarse a la transformación digital se concentran principalmente en cuatro áreas:

- La inversión y carencia de casos de éxito,
- El gap generacional y la resistencia al cambio,
- La carencia de cultura digital y de competencias
- La dificultad de infraestructuras de telecomunicaciones en el ámbito rural.

En primer lugar se sitúa la inversión, el coste de la digitalización se identifica como un riesgo por la alta inversión económica que supone, dado que, según se afirma en las empresas consultadas, no es únicamente el coste de la tecnología, sino también el de la formación del personal y, a veces requiere la contratación de profesionales especializados altamente cualificados, por lo que la decisión última depende de los recursos de los que dispone la empresa y de las necesidades que presenta. Además, se ha identificado que esta dificultad viene también determinada, por la existencia de la incertidumbre sobre los beneficios económicos que pueden generar esta inversión.

La escasez de casos prácticos con resultados, es determinante y puede constituir un freno a la hora de tomar la decisión de invertir en tecnologías 4.0. Desconocer los efectos de retorno de la inversión o los beneficios que se van a obtener, provoca que en el empresario una actitud reticente ante los cambios tecnológicos.

“Muchas veces tenemos que dar un salto de fe, hacia estas nuevas tecnologías y su implementación porque no conocemos resultados, no tenemos el ejemplo de otras empresas.” (Responsable de Innovación Empresa Precursora).

Esto, aunado al gap generacional que pueden tener algunos de los altos mandos o directivos, hace que la posibilidad de crecimiento gracias a la digitalización sea más lenta en algunas empresas.
En este sentido cabe incidir que, la transformación digital no consiste en implementar las últimas tecnologías del mercado sino que es un proceso progresivo hacia la conectividad de la empresa, dirigida a la personalización de los productos orientada al cliente.

“Desde el punto de vista empresarial se ha de tener claras las necesidades de los clientes presentes y futuras y realizar el cambio hacia la innovación de una forma competitiva, optimizando primero los procesos y, una vez asentadas las bases dar el salto”. (Responsable de Innovación Empresa Precursora).

El segundo obstáculo que preocupa a las empresas consultadas, es el gap generacional y la resistencia al cambio, ambos aspectos hacen referencia a la dificultad de adaptación de ciertos colectivos ante estas nuevas tecnologías.

Dicho obstáculo está ligado a la formación de los trabajadores, es decir la carencia de conocimiento y competencias digitales, y se reconoce a la necesidad de formación específica y cualificada que se requiere dado los avances y los procesos de tecnificación.

Esta resistencia se da en mayor medida en la pequeña y mediana empresa, dado que la estrategia de transformación digital a seguir por la gran empresa de la región, mayoritariamente dependiente de sus matrices internacionales, viene determinada por la matriz.
La carencia de cultura digital y de competencias se da tanto por parte de los empresarios como de los trabajadores, es la tercera barrera que se identifica. En este aspecto influye mucho la brecha generacional, presentan mayor dificultad y carencia de conocimientos las personas con cierta edad que los jóvenes, no faltando casos de jóvenes que presentan la misma problemática a la hora de afrontar nuevas competencias digitales.

En el caso del empresario, éste se encuentra reticente al cambio o a la actualización de sistemas de producción por el desconocimiento o poco interés a estas nuevas tecnologías o avances. En el caso del trabajador, con este perfil, teme a la inclusión de estas nuevas tecnologías y, más que una herramienta de ayuda las considera un estorbo o un problema adicional a la hora de realizar su trabajo.

Otra de las barreras es la dificultad de infraestructura de telecomunicaciones. El acceso a Internet es imprescindible para muchas de las tecnologías propias de la Industria 4.0; por lo tanto, muchas empresas no pueden explotar ese potencial tecnológico debido a la carencia de este tipo de servicios en su ubicación, y de intentarlo pueden llegar al fracaso o a la pérdida de una inversión. Esta situación se ha identificado principalmente en las empresas ubicadas en el medio rural, aunque cabe comentar que también existen ejemplos de ello en el área urbana, como es en el Parque Científico de la Universidad de Valladolid, donde las empresas instaladas tienen limitación de acceso a la red de la UVA.

La poca disponibilidad de redes tanto de banda ancha (ADSL) o de nueva generación como la fibra óptica (FTTP), en diferentes áreas del territorio castellano y leonés preocupa a las empresas. Para poder incrementar la digitalización, es imprescindible el acceso a las redes ultrarrápidas, como por ejemplo la fibra óptica.

“Tenemos muchos problemas con nuestro proveedor de internet, tenemos muy pocos Megas [banda ancha] porque aquí no hay fibra óptica y ha habido tres meses en los que se caía el servicio a todas horas, lo cual nos paraba la producción por tenerlo todo interconectado.” (Responsable Innovación Empresa Precursora).
La microempresa y pyme ante la digitalización

El tejido Micro y Pyme empresarial de la Industria regional, es el que presenta mayor freno en su desarrollo tecnológico y el que menos preparado se muestra hacia la transición e implementación tecnológica digital.

El desconocimiento del concepto Industria 4.0, la falta de actitud empresarial hacia el cambio, la carencia de recursos para contratar expertos especializados en TIC o la incapacidad de concretar proyectos reales en éxito, son algunas de las dificultades que presentan en mayor medida las pymes en este periodo de transición hacia la Cuarta Revolución Industrial.

Por consiguiente, existe una relación directa entre el tamaño de las empresas y la dificultad de acceso a la digitalización. Así se argumenta en una de las empresas consultadas.

"Nuestro sector está muy atomizado por empresas pequeñas y medianas que lo tienen muy complicado, para subirse a la 4.0. Necesitan gente que sepa o sino externalizarlo. Muchas no tienen esos recursos y como no ven la necesidad no se suman". (Responsable de Recursos Humanos Empresa Precursora).

Partiendo de la visión generalizada de los expertos consultados, de que la entidad que no se incorpore a la Cuarta Revolución Industrial desaparecerá, constituyen el colectivo con mayor peligro de disolverse y de generar un alto nivel de desempleo.
Teniendo en cuenta, según los últimos datos anuales del INE, que el 99,5% de las empresas industriales son de carácter micro (84,3%) y PYME (14,7%), constituyen el tejido industrial más susceptible frente a la Industria Conectada, por lo que se perfilan como un núcleo potencial para la implantación de la Industria 4.0, siendo imprescindible asesorarlas hacia su transformación digital.

Los sectores industriales con un proceso productivo muy cimentado en la mano de obra directa, con un entorno empresarial aglutinado por las micro y pequeñas empresas, y prácticamente carente de la gran y mediana empresa, que desplieguen un efecto de atracción hacia la innovación, presentan mayor riesgo ante la transformación digital. Ejemplo de estos sectores se identifican en la siguiente tabla.
Tabla 2. Sectores Manufactureros en Riesgo según su tamaño (nº de trabajadores)

<table>
<thead>
<tr>
<th>CNAE - 09</th>
<th>%Micro y Peque</th>
<th>Micro y Peque</th>
<th>Mediana</th>
<th>Grande</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Industria de la alimentación</td>
<td>96,7</td>
<td>2231</td>
<td>58</td>
<td>18</td>
</tr>
<tr>
<td>11 Fabricación de bebidas</td>
<td>98,6</td>
<td>645</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>13 Industria textil</td>
<td>98,4</td>
<td>183</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>14 Confección de prendas de vestir</td>
<td>100,0</td>
<td>344</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15 Industria del cuero y del calzado</td>
<td>100,0</td>
<td>63</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16 Industria de la madera y del corcho, excepto muebles; cestería y espartería</td>
<td>98,3</td>
<td>742</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>17 Industria del papel</td>
<td>91,5</td>
<td>43</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>18 Artes gráficas y reproducción de soportes grabados</td>
<td>99,4</td>
<td>493</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>20 Industria química</td>
<td>94,4</td>
<td>101</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>21 Fabricación de productos farmacéuticos</td>
<td>55,0</td>
<td>11</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>22 Fabricación de productos de caucho y plásticos</td>
<td>90,1</td>
<td>127</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>23 Fabricación de otros productos minerales no metálicos</td>
<td>97,8</td>
<td>570</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>24 Metallurgia; fabricación de productos de hierro, acero y ferroaleaciones</td>
<td>77,4</td>
<td>41</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>25 Fabricación de productos metálicos, excepto maquinaria y equipo</td>
<td>99,0</td>
<td>2039</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>26 Fabricación de productos informáticos, electrónicos y ópticos</td>
<td>100,0</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27 Fabricación de material y equipo eléctrico</td>
<td>96,4</td>
<td>54</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>28 Fabricación de maquinaria y equipo n.c.o.p.</td>
<td>97,4</td>
<td>258</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>29 Fabricación de vehículos de motor, remolques y semirremolques</td>
<td>81,4</td>
<td>96</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>30 Fabricación de otro material de transporte</td>
<td>94,1</td>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>31 Fabricación de muebles</td>
<td>99,7</td>
<td>697</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>32 Otras industrias manufactureras</td>
<td>99,7</td>
<td>397</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>33 Reparación e instalación de maquinaria y equipo</td>
<td>98,4</td>
<td>364</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: INE. Directorio de Empresas [DIRCE], año 2016.

Entre las empresas impulsoras entrevistadas, se localizan micropymes y pymes, por lo que no es únicamente una cuestión de inversión o de otros factores, sino también de alianzas, se considera que una de las formas de sobrevivir, es mediante la colaboración entre las pymes, a través de la transmisión del conocimiento de tecnologías y también del intercambio de servicios y de participación en proyectos. Tal y como se manifiesta en una de las empresas impulsoras.
“...los clúster van a ser básicos para que la pyme, especialmente la pequeña empresa se agrupe por interés en compartir sus conocimientos, ahí es donde el 4.0, al que todos no podemos llegar de igual forma porque evidentemente no tenemos esa capacidad, si podemos compartir, como es el desarrollo de sus conocimientos, en la formación de los trabajadores, en el uso de la tecnología, ... Que la pequeña empresa colabore con otras empresas ponga a disposición este conocimiento y a su vez reclame de otras el conocimiento que han levantado, y juntos, a través del clúster, vayamos a mercados nuevos o que reforcemos nuestros mercados creo que esto va a ser o debería de ser el camino a explotar”. [Gerente de empresa impulsora].

En opinión de los expertos consultados existen dos tipos de pymes: las colaborativas y las dependientes. Así, aquellas pymes o micropymes que no inviertan en tecnología 4.0, serán dependientes de las colaborativas.

“.....al final las microempresas o pymes que no se sumen a duras penas sobrevivirán, al final serán en vez de entidades colaborativas entidades dependientes y el salto serán de los que estén en un rango de colaborar, aquellas que no se innoven o no sean capaces de aportar o asumir conceptos tecnológicos 4.0 estarán en un rango inferior de dependencia hacia donde les lleven otras”. [Gerente de empresa impulsora].

Dentro de la estrategia nacional “Industria Conectada 4.0”, presentan un papel fundamental lo que se denominan entornos colaborativos. Los clúster se constituyen dentro de esta estrategia uno de los entornos colaborativos idóneo para hacer llegar los conceptos de la Industria 4.0 a las Pymes y facilitar la transferencia de conocimiento entre las propias empresas y entre éstas y las entidades tecnológicas proveedores del conocimiento.

A nivel regional, un ejemplo de ello es el sector Hábitat. Sector que ha sufrido la crisis de forma intensa y como forma de oportunidad ha apostado por la innovación y la digitalización bajo el marco colaborativo del Clúster AEICE, desarrollando proyectos orientados hacia el concepto de hábitat eficiente.
No obstante, los clúster, cuyo papel es fundamental, no llegan a toda la pyme por lo que se hace necesario el potenciar otros entornos colaborativos a nivel regional que tengan repercusión entre éstas.

Mientras, la gran industria ubicada en Castilla y León, mayoritariamente dependiente de sus matrices internacionales, está madurando o son ya impulsores de la 4.0, al ritmo de la matriz, por lo que la implementación de medidas regionales 4.0 les influirán en la obtención de ayudas derivadas de su posición de precursores, o en aprovechar la existencia de una red sólida de la industria del conocimiento que ayude a la estrategia de la multinacional.

Esta es otra medida que puede favorecer a la digitalización de las pymes. Crear una industria del conocimiento basada en un tejido empresarial flexible y dinámico y apoyado en las redes universitarias, Startups, empresas o centros tecnológicos que ofrecen servicios en tecnologías 4.0, el sistema educativo reglado y las propias empresas industriales. Teniendo como objetivo el involucrar a empresas castellano y leonesas, que son impulsores en su sector o presentan innovaciones muy específicas para que sirvan de tracción, a este tejido empresarial regional conformado especialmente por la micro y pyme.

Tampoco olvidamos la existencia de multinacionales de origen castellano y leonesa, que son claros precursores como de asociaciones, organismos y otras entidades como AMETIC que presentan estrategias e iniciativas para promover la transición digital en las empresas de la comunidad. Hay un gran potencial en la región haciendo necesario unir estas estrategias en un espacio común y liderado por la administración. Pretensión que se detalla en detalle al final del estudio constituyendo una parte importante de las propuestas que se aportan a la Administración.
IV. IMPACTO EN EL EMPLEO
IV. IMPACTO EN EL EMPLEO

Mercado Laboral

Actualmente ante la irrupción y avance de la Cuarta Revolución Industrial, existe un debate vivo a nivel mundial sobre los efectos que generan los procesos innovadores en el empleo. Es evidente que, la relación entre digitalización y empleo es compleja y genera opiniones diversas motivadas, principalmente, por el factor de incertidumbre que conlleva los avances tecnológicos y su velocidad de desarrollo.

El informe Davos “The Future of Jobs” publicado durante el Foro Económico Mundial celebrado en enero de 2016, concluye que la digitalización de la Industria va a propiciar un saldo negativo en el 2020 de 5,1 millones de puestos laborales, desaparecerán 7,1 millones de empleos y se crearán 2 millones. El Informe “The Digital Revolution: The Impact of the Four Revolution on employment and education”, de la Edge Foundation, organización sin ánimo de lucro de gran notoriedad mundial, igualmente prevé la creación de menos empleos de los que se destruirán.

Estas previsiónes han originado reacciones opuestas de aquellos que defienden que la tecnificación y digitalización no va a destruir empleo, sino que lo va a crear y a transformar mediante la evolución de los puestos de trabajo actuales y la aparición de nuevos perfiles profesionales. En esta línea se ubica el informe “The Industry 4.0 Transition Guantified” de la consultora Roland Berger, que contempla la posibilidad de que en Europa para el 2035 se hayan creado 10 millones de empleos.
Las empresas impulsoras consultadas de la Industria castellana y leonesa, en su mayoría, tienen esta misma opinión, así la Cuarta Revolución Industrial no va a destruir empleo sino que lo va a reorganizar e incluso a generar. De hecho, ese es uno de los efectos que están experimentando ante la transformación digital por la que apuestan. Están viendo incrementadas sus plantillas por el aumento de la productividad, cabe reseñar que la mayoría de ellas ha sufrido el descenso de la producción por efecto de la crisis, y en estos momentos están aprovechando las oportunidades que brindan la digitalización para reactivar su actividad y mejorar sus procesos y productos.

“La Cuarta Revolución Industrial, no va a destruir puestos sino a reorganizarlos y a potenciar nuevos oficios encaminados no a tareas repetitivas sino a desarrollar profesionales cualificados autónomos, es decir que desarrollen capacidades de resolución y de toma de decisiones”. [Responsable de Innovación en empresa impulsora].

“Las automatizaciones no sólo no han destruido empleo, sino que incluso están generando nuevos puestos. En un futuro, con la aplicación de nuevas tecnologías, si se automatiza más vamos a conseguir aumentar la productividad”. [Responsable de Recursos Humanos empresa impulsora].

Aunque se hayan generado puestos, también se reconoce que se han destruido aquellos que no aportan valor añadido, caracterizados por su alto nivel de tareas rutinarias.

De momento, como comentamos, el saldo regional en la Industria entre la destrucción y la creación es positivo hacia la generación de empleo. Por lo que se puede afirmar, que los trabajadores desplazados son absorbidos por otras actividades económicas.

Sin embargo, no es posible garantizar que ante el avance de la Industria Interconectada y las exigencias de cualificación del capital humano demandado en el mercado laboral, se sigan reincorporando estos trabajadores desplazados, por lo que lleva a una segunda cuestión, la necesidad de afrontar, desde la sociedad y más concretamente desde las economías regionales, la reorientación profesional de las personas poco cualificadas.
De este modo, una de las transformaciones estructurales del empleo en las que más va a influir la inclusión de la Digitalización de la Industria, es el cambio del perfil profesional “tipo” que se va a demandar en la fase de producción o cadena de valor, siendo éste diferente al que hasta ahora se ha dado en las empresas de los sectores industriales.

Es decir, el tejido empresarial de la Industria Manufacturera presenta mano de obra directa implicada en la fabricación del producto. Este personal está conformado por puestos rutinarios que no requieren cualificación y, que son los que están siendo sustituidos en un alto porcentaje por robots o máquinas autómatas, y, por otros puestos basados en la técnica manual directamente relacionado con la calidad del producto, que son los que requieren de mayor cualificación y preparación, por lo que ahora se exige como mínimo formación en un ciclo formativo, aparte se les imparte formación en competencias digitales en función de la automatización o robótica implantada.

Estas ocupaciones son las que van a predominar en la cadena de valor, siendo considerados la base de los procesos productivos, por lo que no ven por ello, las empresas consultadas, su sustitución sino la digitalización mediante dispositivos y la robótica colaborativa, que aunque de momento su inclusión es delimitada por diversos factores, ésta será mayor según avance la tecnificación de las empresas.

“Hay un intercambio de conocimientos que no lo aportan las máquinas, estamos hablando de sensibilidades, de sensaciones, de determinar y afianzar la calidad de los productos, esto no lo harán las máquinas, sino las personas”. [Gerente de empresa puntera].

“En el sector industrial el factor humano es imprescindible y se va a mantener, por lo que se necesita y se va a introducir en la fábricas la robótica colaborativa a gran escala. Estamos esperando que se solucione los aspectos legales y que haya un marco legislativo que lo regule para empezar a implementarla”. [Responsable de Recursos Humanos de empresa impulsora].

Por último, cabe mencionar la transformación hacia la digitalización de puestos profesionales cualificados, tanto vinculantes a la fase de producción como a otros departamentos, a los que se les está exigiendo formarse especialmente en programación
y hacia el análisis de datos. De este modo, las ocupaciones tradicionales están sufriendo una readaptación de sus funciones y competencias ante la Cuarta Revolución Industrial.

Tomando como referencia los datos aportados por el Centro Europeo para el Desarrollo de la Formación Profesional (CEDEFOP) estima que el 90% de las profesiones precisen en un futuro próximo de competencias digitales. En el marco de la transformación de la economía hacia la digitalización, el carecer de estas competencias constituira un filtro e exclusión en el mercado laboral. Estudios actuales remarcan la carencia y déficit que presentan los trabajadores de competencias para afrontar los nuevos retos que van a exigir el mercado y, que ya empiezan a exigirse en las empresas que están incursas en esta transformación digital de sus procesos productivos.

Desde la Unión Europea se ha establecido un Marco Europeo de Competencias Digitales para los ciudadanos recogido en el informe “DIGCOM 2.0. The Digital Competence Framework for Citizens”, en el que se identifican veintiuna competencias digitales agrupadas en 5 áreas:

1. **Información y alfabetización digital.** Orientada hacia la capacidad de búsqueda de información digital y de conocimientos básicos digitales.

2. **Comunicación y colaboración.** Hace referencia al uso de tecnologías digitales para procesos de comunicación e interacción de recursos digitales y creación de contenidos. Hace alusión a las normas de conducta a seguir en cuanto a la participación digital y la identidad digital.

3. **Creación de contenido.** Incluye la programación informática y diseño y elaboración de contenidos digitales con derechos de autor.

4. **Seguridad.** Alude a la protección de datos y de la información almacenada con la digitalización de la información.

5. **Resolución de problemas.** Incide en la identificación de necesidades tecnológicas y resolución de problemas técnicos así como en las necesidades de actualizar de
forma permanente las competencias digitales para cubrir la demanda que requieren los cambios.

En el ámbito laboral, las empresas consultadas inciden en que, ante la implementación digital de los procesos que están llevando a cabo, los trabajadores no necesitan únicamente de capacidades de digitalización, sino que éstos vayan acompañados de conocimientos específicos, que capaciten al personal para resolver los problemas o incidencias relacionados con la tecnología de manera rápida y sin pérdidas, como por ejemplo el caso de la programación a la hora de dar mantenimiento o reprogramar a un robot. Y, por otro lado que facultan al trabajador para tomar decisiones basadas en los datos obtenidos, con un margen de error mínimo si se realiza un análisis de datos de manera adecuada.

El estudio “La digitalización: ¿crea o destruye empleo?” realizado por la consultora Randstad concluye que uno de los aspectos que caracteriza el mercado laboral y que su tendencia es mayor ante la transformación digital de las economías, es la polarización laboral. Incremento de las actividades más y menos cualificados en detrimento de los empleos de remuneración media.

Partiendo de este fenómeno, algunos expertos en recursos humanos, auguran con el avance de la digitalización en el conjunto de la economía de los países, el cambio de la pirámide laboral.
Ante esta tendencia de gran calado social, se ha consultado a las todas las entidades participantes (empresas impulsoras, Startups y centros tecnológicos) por la posibilidad de cambio estructural del mercado laboral.

Todas las entidades consultadas coinciden, en que ante la transformación llevada a cabo hasta el momento por las empresas, la pirámide laboral actual prevalece, incluso algunas consideran que no habrá cambios sustanciales de aquí al 2020.

Por el contrario, existen divergencias sobre el efecto que tendrá a largo plazo en el mercado laboral. De este modo, algunas entidades impulsoras opinan que la pirámide seguirá igual y otras que se incrementarán los puestos intermedios. Sin embargo, la opinión que predomina por parte de los centros tecnológicos y de las empresas con mayor nivel de implantación digital, es que a largo plazo, una vez asentada la digitalización no sólo en la economía, sino en la sociedad, la estructura del mercado será más horizontal. Es decir, desaparecerán los puestos intermedios canalizándose el empleo en dos grupos en los de alto nivel ejecutivo y en los especialistas (Obreros cualificados), las órdenes y, por tanto la relación, serán directas a través de la propia digitalización interconectada.

Fuente: Adaptación del esquema de “El mundo que vine” libro de Juan Martínez-Barea
“La pirámide del mercado laboral va a cambiar, considero que en un futuro a largo plazo será más horizontal, dado que la tendencia es tener una directiva especializada y de forma directa dar instrucciones al especialista de cada área”. (Responsable de Innovación empresa impulsora).

En el marco de la digitalización de la industria, el enfoque ha de estar en el trabajador. Hay que aprovechar esta transición y las ventajas que pueden ofrecer los nuevos modelos de organización del trabajo y de los procesos productivos, para mejorar las condiciones de los trabajadores. En esta línea, expertos en recursos humanos hacen alusión a que el trabajador del futuro tendrá varios empleadores y será autónomo, por lo que se potenciará el teletrabajo y se favorecerá la conciliación laboral y familiar.

Sin embargo, al consultar esta posibilidad a las empresas ya impulsoras en este proceso transformador, en España y concretamente en nuestra región no se visualiza este cambio de modelo de trabajador, al menos no a corto o medio plazo.

En este sentido Europa nos aventaja y es una de las directrices en las que se ha de incidir, así como en la mejora de condiciones salariales, y más teniendo en cuenta, según hemos analizado, que el mercado laboral va a tener que estar conformado por trabajadores altamente cualificados.

Durante esta transición industrial, en la que nos encontramos, se pueden dar desafíos que propicien la aparición de desigualdades individuales, a las que hay que evitar. Desde los sindicatos se ha de velar por los derechos y mejoras de los trabajadores ante los cambios de las condiciones laborales como son los riesgos laborales o la propia legislación laboral.
Capital humano ante la digitalización

El factor humano es la clave para la transformación hacia la Cuarta Revolución Industrial. Es importante incidir en que digitalizar no es sinónimo de ser sustituido por un robot o por mecanismos autónomos, sino de interconexión entre la máquina y el hombre hacia un fin común. Desde las empresas impulsoras, se insiste en que los trabajadores han de prepararse hacia el cambio, dado que ante esta evolución se precisa de personas formadas y adaptadas a las nuevas exigencias.

“El centro de la revolución son las personas y cuando las empresas introducen procesos innovadores deben de contar con trabajadores capaces para dar ese cambio. Las mejoras se van introduciendo poco a poco y, son ellos quienes tienen que adaptarse al uso de estas tecnologías. Cada vez va a haber más automatismos, pero principalmente de apoyo. Cuando se habla de robotización se piensa que sólo es poner un robot que sustituye a un trabajador, pero no es eso, es fundamental la colaboración entre operador y robot.”

(Responsable de Innovación empresa impulsora).

“Dejaremos un espacio para las máquinas tendremos que trabajar con equipos informáticos y tendremos que trasladar a las máquinas toda esa información, pero esas máquinas tendrán que ser utilizadas por personas, atendidas por personas y mantenidas por personas”. (Gerente de empresa impulsora).

Esta evolución social y económica requiere de capital humano especializado, lo que se denomina talento 4.0. El nuevo perfil profesional que se perfila es el denominado STEM (especializados en Ciencia, Tecnología, Ingeniería y Matemáticas). Se establecen tres tipos de trabajadores futuros: los puestos laborales identificados dentro de este perfil STEM, los puestos que dan cobertura a dicho perfil, y el resto de ocupaciones.

El estudio citado anteriormente de la consultora Randstad “La digitalización: ¿crea o destruye empleo?” prevé que, en cinco años, con el avance de la digitalización en la sociedad se generen en España 1.250.000 puestos de trabajo. De entre éstos estima que 390.000 serán puramente perfiles STEM.
Gráfico 41. Distribución de Matriculados en Estudios de Grado en las Universidades españolas.

Año 2015.

Los últimos datos publicados, siendo éstos del año 2015, por el Ministerio de Educación, Cultura y Deporte sobre las Estadísticas de Educación, cifra en un 24% el porcentaje de alumnos matriculados en carreras de conocimientos STEM a nivel nacional y, en un 25% en Castilla y León. Estos datos ponen de manifiesto la carencia futura de estos profesionales ante el incremento de su demanda en las empresas, por lo que no se van a cubrir las exigencias del mercado laboral en los próximos años.

En Castilla y León, las Universidades de Valladolid, León y Salamanca son las que registran mayor número de matriculados en estudios de grado de ciencia e ingeniería.

Gráfico 43. Número de Matriculados por tipo de grado en las universidades de Castilla y León en el 2015.

<table>
<thead>
<tr>
<th>UNIVERSIDADES CYL</th>
<th>CC. SOCIALES Y JURÍDICAS</th>
<th>INGENIERÍA Y ARQUITECTURA</th>
<th>ARTES Y HUMANIDADES</th>
<th>CC. DE SALUD</th>
<th>CIENCIAS</th>
<th>CIENCIAS + INGENIERÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universidad de Burgos</td>
<td>3586</td>
<td>1843</td>
<td>245</td>
<td>802</td>
<td>146</td>
<td>1989</td>
</tr>
<tr>
<td>Universidad de León</td>
<td>3953</td>
<td>4321</td>
<td>632</td>
<td>1459</td>
<td>1115</td>
<td>5435</td>
</tr>
<tr>
<td>Universidad de Salamanca</td>
<td>7951</td>
<td>2831</td>
<td>3455</td>
<td>4475</td>
<td>2102</td>
<td>4933</td>
</tr>
<tr>
<td>Universidad de Valladolid</td>
<td>10080</td>
<td>4511</td>
<td>1637</td>
<td>2655</td>
<td>1058</td>
<td>5569</td>
</tr>
<tr>
<td>Católica de Ávila</td>
<td>856</td>
<td>942</td>
<td>0</td>
<td>315</td>
<td>30</td>
<td>972</td>
</tr>
<tr>
<td>Europea Miguel de Cervantes</td>
<td>224</td>
<td>88</td>
<td>0</td>
<td>658</td>
<td>24</td>
<td>112</td>
</tr>
<tr>
<td>I.E. Internacional Isabel I de Castilla</td>
<td>1326</td>
<td>68</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>68</td>
</tr>
<tr>
<td>Pontificia de Salamanca</td>
<td>1475</td>
<td>59</td>
<td>0</td>
<td>936</td>
<td>0</td>
<td>59</td>
</tr>
</tbody>
</table>

Tomando como referencia la Universidad de Valladolid, que ostenta el mayor porcentaje de perfiles STEM entre sus estudiantes, se visualiza la falta de presencia de mujeres en este tipo de carreras, así las mujeres constituyen únicamente el 27% de estos perfiles.

Gráfico 44. Distribución por Género de estudiantes matriculados de Grados STEM. Año 2016

Queda patente la brecha entre la oferta y la demanda de perfiles STEM en el mercado laboral. De ahí que estimular desde la escuela la vocación por estas carreras en los estudiantes actuales y, sobretodo siendo ello prioritario en las estudiantes de secundaria, constituye un reto para el sistema educativo regional.

A esta carencia de profesionales hay que sumar la Fuga de Talento, acontecida por la crisis económica de los últimos años, emigrando a otros países profesionales especializados de alto nivel en busca de oportunidades laborales.
Este talento no capitalizado, va a ser necesario retornar para cubrir la demanda del mercado de trabajo tanto nacional como de Castilla y León, siendo fundamental por parte de la administración regional la aplicación de políticas y medidas habilitadas, que facilite a las empresas generar empleo para estos profesionales con el fin de amortizarlo.

Desde las empresas impulsoras entrevistadas, no sólo identifican esta carencia de profesionales sino que, se va más allá ante las necesidades que exigen los cambios estructurales de la transformación digital, consideran que existe una brecha entre la universidad y el entorno laboral, lo que se traduce en un gap entre la formación y conocimientos que presentan los universitarios y las necesidades de las empresas.

“La universidad es una brecha de formar a personas se necesita gente con conocimiento más práctico hacia procesos. Vienen muchos alumnos que piden prácticas en empresas especialmente los ingenieros para aprender mientras se forman porque son conscientes de sus carencias. Es necesario no instruir a trabajadores sino a futuros trabajadores que luego van a permanecer en tu empresa”. [Responsable de Recursos Humanos empresa impulsora].

“En la universidad ha de existir también una revolución, hablamos de innovación abierta, exponencial, todo va muy rápido y evidentemente se necesita gente que sepa pensar y resolver problemas generalistas, pero al final la universidad se dedica a eso a tener gente acostumbrada a pensar. Así que donde te formas es donde empiezas a trabajar pero eso se tiene que transformar, han de venir ya con la actitud, los conocimientos que se imparten ahora en la universidad no es lo que estamos requiriendo con la revolución industrial. Se tiene que ser más ágiles, es como en las empresas cuando hablamos de formas de gestión ágiles, la universidad debe hacer lo mismo. No necesitamos gente que tenga que aprender en la empresa, queremos gente que llegue y diga yo no te explico lo que es un transistor o diodo pero voy yo lo monto”. [Responsable de innovación empresa impulsora].

Tal y como aseguran los expertos consultados, no es suficiente el conocimiento sino que las empresas demandan otras habilidades como es la capacidad de análisis, resolución de problemas, innovación o la creatividad y fundamentalmente en competencias digitales (descritas éstas en el apartado anterior).
La escuela básica, los Centros Formativos de ciclos profesionales y la Universidad, deben actualizar sus modelos de enseñanza y adecuarlos a estas nuevas necesidades yendo al ritmo que exige el entorno laboral. Así han de dotar las aulas de las últimas tendencias tecnológicas y, en sus programas, asignaturas en tecnologías de la información, computación y fundamentalmente un pensamiento más pragmático de aprendizaje basado en la comprensión resolutiva.

“Hay que comenzar la educación o el aprendizaje desde la escuela, es necesario cambiar el modelo actual basado en memorizar y desarrollar un aprendizaje más práctico y funcional hacia la resolución de problemas y toma de decisiones, potenciar esas competencias tan valiosas para el futuro más inmediato. Es trasladar los modelos de aprendizaje que ya existen en Alemania o en Dinamarca, en el que se habilitan desde pequeños competencias y habilidades muy requeridas en ámbito profesional. [Responsable en Innovación empresa impulsora].

“La industria 4.0 necesita talento y una de las entidades facilitadora de ese talento deberá ser la Universidad. La cual buscará la alineación de las competencias y estándares del currículo con la realidad del mercado y de la transformación digital, así como el diseño de grados y postgrados específicos centrados en las nuevas competencias y perfiles profesionales que requiere la Cuarta Revolución Industrial”. [Responsable en Innovación Centro Tecnológico].

Por otro lado, prácticamente por unanimidad de opiniones, las empresas impulsoras coinciden en que salen mejor preparados los alumnos que han cursado ciclos formativos (formación profesional) que los universitarios. En temáticas de ciencias y de informática presentan más conocimientos de tecnologías actuales de robótica o programación, a pesar de ello es necesaria su mejora.

“….. cualquier ciclo formativo (FP) es mejor que los grados universitarios en efectividad, practicidad y temarios modernos. Es una asignatura pendiente de la universidad. [Responsable en innovación en centro tecnológico].”

“La formación de formación profesional ahora ciclos formativos, considero que salen mejor preparados que en la universidad, además es más corta y más precisa, solo que no se si
estén con lo nuevo, en ese aspecto pasa lo mismo que en la universidad, han de renovarse y especialmente los profesores”. [Responsable en Innovación empresa impulsora].

En esta línea, inciden algunas de las empresas en los beneficios de la formación profesional dual. Mientras que en términos generales, a las empresas regionales debido, entre otros aspectos, a la novedad y a la carencia de información, es difícil sensibilizarlas en la necesidad de este modelo educativo, las impulsoras demandan esta formación y avalan las prácticas de dos a tres años que han de realizar considerando que es imprescindible esta duración para formar a futuros profesionales.

En resumen, hay que ir hacia una educación con una base común de conocimientos (programación, algoritmos, impresión 3D, etc.), que propicien la alfabetización digital en los programas educativos españoles, en concordancia con los europeos. Esta formación ha de incluir todas las dimensiones de la Revolución Digital (ética, social, política, económica, técnica). La creación de una red regional abierta de escuelas, institutos y centros de investigación, en torno a un vasto programa de investigación interdisciplinaria sobre lo digital propiciaría una velocidad de avance y más si se asocia al esfuerzo nacional o/y europeo.

Y finalmente hay que impulsar las inversiones públicas y privadas para fortalecer la investigación sobre la transformación digital a través de nuevas cátedras y centros de investigación dedicados.

El gap de talento que identifican las empresas entrevistadas, no viene determinado únicamente por la dificultad que tienen de encontrar o contratar estos perfiles digitales específicos y formados, sino también viene definido por la necesidad inmediata, que exige la evolución de la digitalización de su cadena, de competencias digitales de sus profesionales ante la modificación de tareas por el manejo de software y análisis de datos, etc. Para hacer frente a este déficit, es necesario desde las empresas impartir formación interna. Por ello, requiere que cuenten con programas de formación para sus empleados, que les posibiliten evolucionar en sus puestos de trabajo hacia puestos existentes en la industria 4.0.
En principio, se visualizan dos vertientes en las empresas impulsoras, por un lado aquella que cuenta con mayores recursos y facilita formación de las nuevas herramientas, automatismos, dispositivos o conocimientos profesionales específicos ya sea mediante sus proveedores o formación especializada de máster o cursos muy concretos.

Por otro lado, la que busca ya personal formado y que sus trabajadores se autoformen mediante nuevos sistemas de formación Mooc’s, (acrónimo en inglés de Massive Online Open Courses) plataformas que garantizan formación por universidades internacionales, en las cuales hay cursos que capacitan en especializaciones digitales orientadas a la Cuarta Revolución Industrial.

"En nuestra entidad los técnicos, se están formando a través de MOOCS, es lo más moderno que he visto. Yo mismo he realizado un curso de machine learning con acreditado con un título por la Universidad de Stanford, ... La formación se imparte mediante videos, prácticas con programación, de tal forma los propios programas te analizan si está bien o no, y cuando has conseguido el objetivo notifica que pasas la prueba. Cuando lo hice éramos treinta mil personas, esto te da una idea de cómo está rompiendo este sistema. Además, te hace replantear cómo voy a hacer una carrera y estarme 5 años si en 2 meses yo sé hacer algoritmos de machine learning y me lo ha explicado el gurú de machine learning. Hay que ser rápidos, esto es ágil, está mejor adaptado este sistema porque hacen lo último y lo que demanda las empresas". (Responsable de Innovación e presa impulsora).

Es imprescindible generar en Castilla y León, una industria del conocimiento sólida respaldada con proyectos empresariales con salidas reales en el mercado.
Oportunidades de empleo: nichos de empleo, yacimientos y profesiones futuras

Con objeto de identificar las oportunidades laborales que ofrece el proceso de digitalización de la Industria en Castilla y León, se han detectado por un lado, aquellos empleos más demandados en las empresas sectoriales consultadas, y por otro lado aquellas actividades económicas o yacimientos que presentan una oportunidad de negocio y que están generando la creación de Startups tecnológicas.

Determinados perfiles que se describen a continuación, por su alta demanda y la baja competencia que ostentan, constituyen una excelente oportunidad de empleo, y guía para aquellas personas que estén en búsqueda de empleo.

NICHOS DE EMPLEO EN LAS EMPRESAS DE LA INDUSTRIA

En el presente estudio se ha entendido como nicho de empleo, aquellos perfiles profesionales emergentes en las empresas industriales consultadas. Estas ocupaciones detectadas, derivadas de la transformación digital desarrollada hasta el momento por las empresas industriales castellanas y leonesas, se traducen, algunas de ellas, en nuevas profesiones y otras se derivan de la reconversión de los profesionales tradicionales ante las exigencias que conlleva la nueva Industria Conectada.

Del trabajo de campo desarrollado, se han detectado 13 perfiles profesionales que se relacionan en una primera ficha descriptiva. A continuación, se ha realizado por perfil profesional, un análisis exhaustivo de las ofertas laborales publicadas en los últimos meses (enero, febrero y marzo) en buscadores de empleo más notorios y utilizados por las empresas para la selección de personal, siendo éstos: Infojobs, Indeed, Infoempleo, Linkedin y tu trabajo.org.
A. PERFILES PROFESIONALES DEMANDADOS EN SECTORES INDUSTRIALES DE CASTILLA Y LEÓN ANTE LA TRANSFORMACIÓN DIGITAL

PERFILES PROFESIONALES ASOCIADOS

<table>
<thead>
<tr>
<th>Machine learning</th>
<th>Lean manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matemático</td>
<td>Estadístico</td>
</tr>
<tr>
<td>Data scientist</td>
<td>Marketing digital</td>
</tr>
<tr>
<td>Ingeniero programador</td>
<td>Técnico de mantenimiento</td>
</tr>
<tr>
<td>Ingeniero de sistemas</td>
<td>Técnico de calidad</td>
</tr>
<tr>
<td>Ingeniero de procesos</td>
<td>Técnico de máquinas de control numérico</td>
</tr>
<tr>
<td>Ingeniería en electrónica y automática</td>
<td></td>
</tr>
</tbody>
</table>

ANÁLISIS DESCRIPTIVO

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>TENDENCIA DE DEMANDA</th>
<th>CARÁCTER</th>
<th>GAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERFILES PROFESIONALES</td>
<td>ACTUAL</td>
<td>FUTURA</td>
<td>POLIVALENTE</td>
</tr>
<tr>
<td>Machine learning</td>
<td>Baja</td>
<td>Alta++</td>
<td>✓</td>
</tr>
<tr>
<td>Matemáticos</td>
<td>Alta+</td>
<td>Alta++</td>
<td>✓</td>
</tr>
<tr>
<td>Data scientist</td>
<td>Medio</td>
<td>Alta++</td>
<td>✓</td>
</tr>
<tr>
<td>Ingeniero programador</td>
<td>Medio</td>
<td>Alta ++</td>
<td>✓</td>
</tr>
<tr>
<td>Ingeniero de sistemas</td>
<td>Alta++</td>
<td>Alta</td>
<td>✓</td>
</tr>
<tr>
<td>Ingeniero de procesos</td>
<td>Alta++</td>
<td>Alta</td>
<td>✓</td>
</tr>
<tr>
<td>Ingeniería en electrónica y automática</td>
<td>Alta</td>
<td>Alta++</td>
<td>✓</td>
</tr>
<tr>
<td>Lean manufacturing</td>
<td>Alta++</td>
<td>Alta</td>
<td>✓</td>
</tr>
<tr>
<td>Estadístico</td>
<td>Baja</td>
<td>Alta</td>
<td>✓</td>
</tr>
<tr>
<td>Marketing digital</td>
<td>Medio</td>
<td>Alta++</td>
<td>✓</td>
</tr>
<tr>
<td>Técnico de mantenimiento</td>
<td>Alta++</td>
<td>Alta++</td>
<td>✓</td>
</tr>
<tr>
<td>Técnico de Calidad</td>
<td>Alta</td>
<td>Alta</td>
<td>✓</td>
</tr>
<tr>
<td>Técnicos de control numérico</td>
<td>Alta++</td>
<td>Media</td>
<td>✓</td>
</tr>
</tbody>
</table>

MÁS VALORADOS

<table>
<thead>
<tr>
<th>Machine learning</th>
<th>Matemáticos</th>
<th>Data scientist</th>
<th>Ingeniero programador</th>
<th>Ingeniería electrónica y automática</th>
<th>Marketing digital</th>
<th>Técnico de mantenimiento a nivel de producción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competencias más demandadas hacia la digitalización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inglés</td>
<td>Capacidad de trabajar en equipo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacidad de iniciativa y creatividad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacidad de Organización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacidad de resolución de problemas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Responsabilidad en el trabajo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Competencias digitales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A pesar de que no se ha localizado ninguna oferta laboral en los sectores industriales regional del mercado analizado, este perfil se está demandando en las empresas impulsoras consultadas. De este modo, ha sido identificado por una de las que presenta mayor grado de incursión en tecnología 4.0, registrando varias contrataciones en su plantilla.

Así, constituye un perfil emergente resultado de los nuevos avances tecnológicos, muy específico y con un alto grado de cualificación. Además según se visualiza en el gráfico, sí que existe demanda en la Industria a nivel nacional, por lo que su tendencia se prevé en alza según evolucione la digitalización en los sectores industriales de la región.
Se están demandando cada vez más matemáticos por su conocimiento en algoritmos, además de por su creatividad, su transversalidad y su capacidad de resolución de problemas, competencias muy valoradas ante los nuevos desafíos.

Ha sido un perfil, hasta hace pocos años, orientado a la docencia en opinión de los expertos entrevistados, no obstante ante el desarrollo tecnológico y científico son muy valorados en el mercado laboral actual.
Con los nuevos modelos de organización industrial derivados de la digitalización, las empresas van a basar, fundamentalmente, la toma de decisiones estratégicas en el almacenamiento y análisis masivo de datos a tiempo real y automático de su cadena de valor como de sus proveedores. Para este fin, se requieren profesionales preparados y con alta cualificación.

Este analista de datos, presenta gran demanda especialmente en Madrid y en Cataluña. La oferta de esta ocupación Castilla y León es todavía débil. Ello puede deberse, tal y como manifiestan los expertos consultados, a que en vez de generarse un puesto concreto, se ha dado formación concreta en big data a profesionales de las empresas para integrarlo dentro de sus funciones profesionales, careciendo de especialistas en este campo. No obstante, según avance la implementación tecnologías 4.0 en la región, se prevé la profesionalización de este perfil y una tendencia alta de contratación.
Actualmente, el ingeniero informático se configura como una de las ocupaciones decisivas en la Industria 4.0.

Los nuevos modelos organizativos industriales, basados en el control de los procesos productivos mediante la aplicación de tecnologías de la información, ha dado cabida a un nuevo escenario en el que confluyen las tecnologías de la información con la robótica siendo clave el Internet de las cosas, presentando así estos profesionales, altas oportunidades laborales por lo que requieren completar su formación con conocimientos en tecnologías digitales.
Ante el ritmo acelerado de transformación digital ha dificultado a las empresas el localizar capital humano disponible con la experiencia, habilidades y conocimientos que se precisan. Uno de los perfiles con mayor dificultad de encontrar son los ingenieros de sistemas y, especialmente de sistemas integrados.

Se encargan del diseño de sistemas que se utilizan en el proceso de producción y logística para llevar el control de la producción y recabar datos. Se les exige conocimientos de software, en redes, seguridad y gestión de procesos de negocio.
A nivel nacional ante la incursión de los cambios hacia procesos más flexibles y rápidos se solicitan estas ocupaciones en todos los sectores, en Castilla y León por la introducción de innovaciones tecnológicas 4.0 se ha incrementado su demanda.

Se requieren profesionales con alta cualificación y conocimientos de vanguardia para el diseño, desarrollo, mejora y gestión de los procedimientos industriales orientados a la fabricación informatizada con todos los procesos interconectados. Entre sus competencias y habilidades destacan su capacidad creativa y de resolución de...
problemas en cuanto a la utilización de maquinaria automatizada, robots, sistemas de información de vanguardia, entre otros.

INGENIERO EN ELECTRÓNICA

OFERTAS IDENTIFICADAS

<table>
<thead>
<tr>
<th>POR COMUNIDADES AUTÓNOMAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDALUCÍA</td>
</tr>
<tr>
<td>ARAGÓN</td>
</tr>
<tr>
<td>ASTURIAS</td>
</tr>
<tr>
<td>CANARIAS</td>
</tr>
<tr>
<td>CANTABRIA</td>
</tr>
<tr>
<td>CASTILLA LA MANCHA</td>
</tr>
<tr>
<td>CASTILLA Y LEÓN</td>
</tr>
<tr>
<td>CATALUÑA</td>
</tr>
<tr>
<td>GALICIA</td>
</tr>
<tr>
<td>ISLAS BALEARES</td>
</tr>
<tr>
<td>MADRID</td>
</tr>
<tr>
<td>MURCIA</td>
</tr>
<tr>
<td>NAVARRA</td>
</tr>
<tr>
<td>PAÍS VASCO</td>
</tr>
<tr>
<td>RIOJA</td>
</tr>
<tr>
<td>VALENCIA</td>
</tr>
</tbody>
</table>

POR CATEGORÍA DEL PUESTO

- **13 %** Informática y Telecomunicaciones
- **70 %** Ingenieros y Técnicos

POR SECTORES

<table>
<thead>
<tr>
<th>CYL</th>
<th>NACIONAL</th>
</tr>
</thead>
</table>

DESCRIPTOR DEL PERFIL

POR PUESTOS
- Jefe de mantenimiento y producción
- Ingeniero eléctrico
- Técnico de mantenimiento

POR ESTUDIOS
- Ingeniería técnica
- FP Mantenimiento electromecánico
- Ingeniería electrónica
- Ingeniería mecatrónica
- Ingeniería en automática industrial

POR HABILIDADES
- **Capacidad de dirección**
- Responsabilidad
- Organización
- Trabajo en equipo

POR CONOCIMIENTOS
- Maquinaria
- Instalaciones
- Procesos industriales
- Automatización y control numérico
- Neumática Hidráulica
- Electrónica
- Electromecánica
- Diseño y montaje

POR TECNOLOGÍAS
- **SAP**
- **PRISMA**
- **Autocad**
- **PRESTO**
- **WINPROJECT**
- **Xelec**
- **LWD**

IDIOMAS
- Inglés

El ingeniero en electrónica y automática se especializa en la realización de diseños de productos industriales, sistemas electrónicos analógicos, digitales y de potencia, sistemas de control y automatización industrial bajo las exigencias de la digitalización de la Industria 4.0. Se valora la capacidad de trabajo de equipo dado que su trabajo se desempeña fundamentalmente dentro de equipos multidisciplinares. Su oferta laboral en el mercado de trabajo nacional, se extiende a todos los sectores mientras que en Castilla y León se canaliza en la Industria y en los Servicios.
Ante los retos de la Industria 4.0 con Fábricas Inteligentes y Conectadas, es vital gestionar los procesos de fabricación de manera eficiente. Para ello estos profesionales utilizan nuevas tecnologías adaptadas a las nuevas innovaciones. Por lo que han de formarse en conocimientos informáticos y de programación.

En Castilla y León es un perfil con alta demanda, siendo ésta cada vez mayor según se van desarrollando nuevas tecnologías digitales en la Industria regional.
Este perfil se ha requerido, en algunas de las empresas industriales consultadas, sin embargo el análisis de ofertas del mercado, denota que su demanda en Castilla y León es débil.

Además, estos profesionales precisan especializarse en conocimientos informáticos y en big data. Ante esta necesidad que se ha identificado en las empresas, en la Universidad de Valladolid se ha instituido una doble titulación con grado en ingeniería informática y grado en estadística. Es la única universidad a nivel nacional que presenta esta formación. Este doble grado es muy reciente, por lo que se espera, en breve, que se produzcan, contrataciones de este perfil tanto a nivel regional como nacional.
La oferta laboral de estos profesionales se localiza principalmente, en la Industria y de servicios tanto a nivel nacional como regional. Precisan de conocimientos en redes sociales, big data y diseño gráfico.

Su desempeño laboral adaptado hacia la digitalización de la Industria, se fundamenta en el uso de las nuevas tecnologías implementadas en el marketing tradicional, enfocado más en la promoción del producto, detección de necesidades y satisfacción del cliente.
Este perfil es uno de los que presenta mayor demanda actual y se prevé que también futura. Se identifica como esencial en la Industria ante la inclusión de automatismos y robótica en la cadena de valor. Por ello, se solicita un profesional polivalente, que incluya conocimientos de todas las áreas de mantenimiento como es mecánica, hidráulica, neumática, eléctrica, autómata..., con capacidad y manejo de programación.

Precisan, en este sentido, formación complementaria en estos conocimientos para adquirir una mayor cualificación. Ante estas exigencias es un perfil muy valorado, especialmente en las PYMES, y difícil de encontrar.
De entre los sectores industriales analizados, donde mayor cobertura tienen estos profesionales es en el sector Agroalimentario. Es un perfil muy demandado dentro de la cadena de valor en el proceso de trazabilidad así como en los departamentos de I+D+i orientado a la innovación nutricional o de la materia prima de los productos.

En el resto de sectores industriales estos profesionales desempeñan funciones en todo el proceso productivo, que según vayan evolucionando las tecnologías de información en la fabricación del producto van a necesitar mayor conocimiento de competencias digitales especialmente hacia el análisis de datos, big data.
La oferta laboral de este perfil en Castilla y León se localiza únicamente en la Industria.

De todos los perfiles identificados, es el que presenta mayor demanda en la región, con un 7,1%, ello es debido a que las empresas están en proceso de automatización inicial creciente.

Sin embargo, otros perfiles más cualificados y emergentes en los procesos de transformación digital, como son los profesionales en Machine Learning o los matemáticos, presentan mayor demanda en Madrid o Cataluña, comunidades con una Industria más avanzada y que marcan la tendencia nacional hacia la transición a la
Cuarta Revolución Industrial. Por lo que es un perfil, que según se vaya evolucionando hacia la Industria 4.0 es posible que se demande en menor medida, afianzándose otros empleos con mayor grado de digitalización.
YACIMIENTOS DE EMPLEO

La Cuarta Revolución Industrial está generando una amplia gama de tecnologías 4.0. Esta evolución digital propicia la creación y asentamiento de empresas o Startups de servicios especializadas en TI. Estas empresas emergentes comprenden áreas de mercado que están en pleno proceso de investigación, por lo que constituyen una fuente potencial de empleo y de crecimiento constante.

Así, los análisis realizados en otros países, hacen alusión a que aquellos países que propicien la existencia de empresas capaces de concebir y fabricar los elementos para la nueva transformación digital, serán capaces de generar nuevos empleos, por el contrario si se quedan a la cola y sus empresas sólo son receptoras de estos útiles para esta nueva Industria, sólo realizarán las inversiones que irán destinadas a crear empleos en otros lugares diferentes a nuestro objetivo, por tanto tendrá una pérdida de empleos netos.
En el presente estudio se han localizado cinco nuevos yacimientos, que suponen un nicho para aquellas personas que quieran orientarse hacia el mercado laboral futuro regido por la transformación digital de la sociedad.

Estos yacimientos en expansión, en Castilla y León se localizan en las siguientes áreas tecnológicas:

- **Yacimiento 1. Robótica y sistemas.**
- **Yacimiento 2. Lean manufacturing.**
- **Yacimiento 3. Realidad aumentada y realidad virtual.**
- **Yacimiento 4. Ciberseguridad.**
- **Yacimiento 5. Big data.**

A continuación, se aporta información sobre las oportunidades de empleo que presentan estas actividades económicas de la tecnología de la información. Para ello, se realiza una descripción de los perfiles profesionales que se están demandando en la actualidad, para cada uno de los yacimientos de empleo identificados.
YACIMIENTO DE EMPLEO 1

ROBÓTICA Y SISTEMAS

TENDENCIA DE DIGITALIZACIÓN

YACIMIENTO CON TENDENCIA EN ALZA Y CON ALTO CRECIMIENTO DE EMPLEO. CANALIZA SU SERVICIO EN LA FASE DE PRODUCCIÓN O CADENA DE VALOR DE LA INDUSTRIA.

Diseño de robótica industrial y automatización de sistemas para la flexibilización y customización de los procesos industriales. Incluyen servicios de control y mantenimiento industrial (preventivo, predictivo y correctivo) como son sistemas inteligentes de mantenimiento y sistemas de fabricación predictivo.

PERFILES PROFESIONALES ASOCIADOS

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>TRADICIONAL</th>
<th>EMERGENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ingeniero Industrial Electrónica y Automatización Industrial</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Técnico de Mantenimiento Mecánico</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Técnico de Mantenimiento Electrónico</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Técnico de Mantenimiento Automatización Industrial</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

ANÁLISIS DESCRIPTIVO

TENDENCIA DE DEMANDA

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>ACTUAL</th>
<th>FUTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Ingeniero Industrial</td>
<td>Alta</td>
<td>Alta ++</td>
</tr>
<tr>
<td>Técnico de Mantenimiento Mecánico</td>
<td>Media</td>
<td>Baja</td>
</tr>
<tr>
<td>Técnico de Mantenimiento Electrónico</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Técnico de Mantenimiento Automatización Industrial</td>
<td>Media</td>
<td>Alta ++</td>
</tr>
</tbody>
</table>

FUNCIONALIDAD Y CARÁCTER

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>POLIVALENTE</th>
<th>TRANVERSALE</th>
<th>SECTORIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ingeniero Industrial</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Técnico de Mantenimiento Mecánico</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Técnico de Mantenimiento Electrónico</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Técnico de Mantenimiento Automatización Industrial</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

MÁS VALORADOS

Perfiles más valorados por su cualificación y relevancia funcional:

Ingeniero Industrial
Técnico de Mantenimiento Automatización Industrial

COMPETENCIAS Y CONOCIMIENTOS MÁS DEMANDADOS

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>CONOCIMIENTOS</th>
<th>COMPETENCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático e Ingeniero Industrial</td>
<td>Robótica Colaborativa, automatas programables, visión artificial, perfilometría laser, Bin-picking, SAP, RIDE, SLAM, ROBLE, PLC's, Sistemas BATCH ([Rockwell, Siemens], sistemas ERP, sistema PC37, Programación de SCADAS, AGV, inglés, alemán, ...</td>
<td>Relación Interpersonal, Capacidad de iniciativa, idiomas, Capacidad de toma de decisiones, Creatividad e innovación y Aprendizaje autónomo y adaptación al campo.</td>
</tr>
<tr>
<td>Técnico de Mantenimiento Mecánico, Electrónico o de Automatización Industrial</td>
<td>Conocimiento de sistemas eléctricos, neumáticos e hidráulicos, de potencia medida y regulación, automatización industrial, fotocelulas, cintas transportadoras, sorters, translevaadores, Linux/C/C++, Visual Basic y Java, inglés, ...</td>
<td>Capacidad de organización del trabajo, Capacidad de Trabajar en Equipo, Relación Interpersonal y Adaptación al cambio.</td>
</tr>
</tbody>
</table>

GAP FORMACIÓN

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>GAP DE FORMACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático e Ingeniero Industrial</td>
<td>Las asignaturas dedicadas a la robótica dentro del grado en Ingeniería Electrónica Industrial y Automática son pocas, y solo se imparten en el último año del curso.</td>
</tr>
<tr>
<td>Técnico de Mantenimiento Mecánico, Electrónico o de Automatización Industrial</td>
<td></td>
</tr>
</tbody>
</table>

Perfiles más valorados por su cualificación y relevancia funcional:
YACIMIENTO DE EMPLEO 2

LEAN MANUFACTURING

TENDENCIA DE DIGITALIZACIÓN
TENDENCIA EN CRECIMIENTO, CONCENTRANDO SU ACTUACIÓN EN LA FASE DE ORGANIZACIÓN DEL TRABAJO Y GESTIÓN DE LA PRODUCCIÓN

La digitalización del conjunto de buenas prácticas que tienen las empresas para fabricar en calidad, tiempo y en costes, mediante el uso de móviles, o tabletas a manera de apoyo.

PERFILES PROFESIONALES ASOCIADOS

<table>
<thead>
<tr>
<th></th>
<th>TRADICIONAL</th>
<th>EMERGENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático desarrollador de aplicaciones móviles</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ingeniero en tecnologías de telecomunicación</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ingenieros Industriales</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Especialista en Marketing</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Analista Big Data</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

ANÁLISIS DESCRIPTIVO

TENDENCIA DE DEMANDA

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>ACTUAL</th>
<th>FUTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático desarrollador de aplicaciones móviles</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Ingeniero en tecnologías de telecomunicación</td>
<td>Alta</td>
<td>Alta ++</td>
</tr>
<tr>
<td>Ingenieros Industriales</td>
<td>Media</td>
<td>Baja</td>
</tr>
<tr>
<td>Especialista en Marketing</td>
<td>Alta</td>
<td>Alta ++</td>
</tr>
<tr>
<td>Analista Big Data</td>
<td>Media</td>
<td>Alta ++</td>
</tr>
</tbody>
</table>

FUNCIONALIDAD Y CARÁCTER

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>POLIVALENTE</th>
<th>TRANVERSAL</th>
<th>SECTORIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático desarrollador de aplicaciones móviles</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ingeniero en tecnologías de telecomunicación</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ingenieros Industriales</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Especialista en Marketing</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Analista Big Data</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

MÁS VALORADOS
Perfiles más valorados por su cualificación y relevancia funcional:
Ingeniero en Telecomunicaciones e informáticos desarrolladores de aplicaciones
Analista Big Data

COMPETENCIAS Y CONOCIMIENTOS MÁS DEMANDADOS

PERFILES PROFESIONALES

<table>
<thead>
<tr>
<th></th>
<th>CONOCIMIENTOS</th>
<th>COMPETENCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático</td>
<td>Desarrolladores de software, aplicaciones móviles, idiomas (Inglés, Francés, o Portugués).</td>
<td>Adaptación al cambio, polivalencia, creatividad, autoformación para diferentes frameworks, liderazgo, organización del trabajo.</td>
</tr>
<tr>
<td>Ingeniero Industrial</td>
<td>Conocimientos de industria y procesos de fabricación, para realizar el “customer succes”,</td>
<td>Don de gentes, liderazgo, organización del trabajo.</td>
</tr>
</tbody>
</table>

GAP FORMACIÓN

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>GAP DE FORMACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático e Ingeniero en tecnologías de telecomunicación</td>
<td>Amplio gap entre la formación en la universidad y la realidad del trabajo en las empresas: en la universidad se adquieren muchos conocimientos, sin embargo están atrasados en relación a las necesidades del mercado laboral.</td>
</tr>
</tbody>
</table>
REALIDAD AUMENTADA Y REALIDAD VIRTUAL

TENDENCIA DE DIGITALIZACIÓN

TENDENCIA EN CRECIMIENTO, CON PARTICIPACIÓN MAYORITARIA EN LAS FASES DE CONCEPCIÓN DEL PRODUCTO/PROCESO Y ORGANIZACIÓN DEL TRABAJO

Simulación de procesos y Organización autoformadora. Se muestra a un operario que es lo que tiene que hacer en cada momento mediante realidad aumentada, para evitar fallos en cadenas de producción, aumentar la curva de aprendizaje y mejorar tiempos. Es una herramienta de formación, y detección de errores.

PERFILES PROFESIONALES ASOCIADOS

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>TRADICIONAL</th>
<th>EMERGENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático especializado en 3D</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Comercial</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Experto en Administración de Empresas</td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

ANÁLISIS DESCRIPTIVO

TENDENCIA DE DEMANDA

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>ACTUAL</th>
<th>FUTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático especializado en 3D</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Comercial</td>
<td>Alta</td>
<td>Baja</td>
</tr>
<tr>
<td>Experto en Administración de empresas</td>
<td>Media</td>
<td>Baja</td>
</tr>
</tbody>
</table>

FUNCIONALIDAD Y CARÁCTER

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>POLIVALENTE</th>
<th>TRANVERSAL</th>
<th>SECTORIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático especializado en 3D</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Comercial</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Experto en Administración de Empresas</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

MÁS VALORADOS

Perfiles más valorados por su cualificación y relevancia funcional:

| Ingeniero Informático especializado en 3D |
| Comercial |

COMPETENCIAS Y CONOCIMIENTOS MÁS DEMANDADOS

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>CONOCIMIENTOS</th>
<th>COMPETENCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático especializado en 3D</td>
<td>Diseño 3D, Manejo de plataformas de desarrollo de videoguegos (Unity 3D, Unreal Engine), Inglés,</td>
<td>Interés por autoformación, y renovación en internet para desarrolladores y las renovaciones de las plataformas, sistemas o hardware.</td>
</tr>
<tr>
<td>Comercial</td>
<td>Conocimientos en ventas, mercado y nuevas tecnologías relacionadas con la realidad virtual.</td>
<td>Una persona que sepa hablar con un cliente, que sepa entenderle y que sepa transmitirle lo que hacemos.</td>
</tr>
</tbody>
</table>

GAP FORMACIÓN

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>GAP DE FORMACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Informático</td>
<td>Los cursos relacionados con las tecnologías de realidad aumentada o virtual son escasas o inexistentes, tanto en grados como en posgrados, además en los grados no se dan asignaturas de comercialización, marketing o administración de empresas, pilares muy importantes para el mundo laboral.</td>
</tr>
</tbody>
</table>
YACIMIENTO DE EMPLEO 4

CIBERSEGURIDAD

TENDENCIA EN ALZA, CON PARTICIPACIÓN GENERAL EN INDUSTRÍA 4.0

La ciberseguridad tiene como objetivo la protección de la información digital procesada, almacenada y transportada que se encuentra en los sistemas interconectados. Tanto de una empresa como de una organización. Utiliza un conjunto de herramientas, normas, tecnologías, leyes y técnicas para la seguridad informática.

PERFILES PROFESIONALES ASOCIADOS

<table>
<thead>
<tr>
<th>TRADICIONAL</th>
<th>EMERGENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experto en ciberseguridad</td>
<td></td>
</tr>
<tr>
<td>Ingenieros de sistemas seguros</td>
<td></td>
</tr>
<tr>
<td>Analista de ciberseguridad</td>
<td></td>
</tr>
<tr>
<td>Ingeniero en informática</td>
<td></td>
</tr>
<tr>
<td>Ingeniero en telecomunicaciones</td>
<td></td>
</tr>
</tbody>
</table>

ANÁLISIS DESCRIPTIVO

TENDENCIA DE DEMANDA

<table>
<thead>
<tr>
<th>ACTUAL</th>
<th>FUTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experto en ciberseguridad</td>
<td></td>
</tr>
<tr>
<td>Ingenieros de sistemas seguros</td>
<td></td>
</tr>
<tr>
<td>Analista de ciberseguridad</td>
<td></td>
</tr>
<tr>
<td>Ingeniero en informática</td>
<td></td>
</tr>
<tr>
<td>Ingeniero en telecomunicaciones</td>
<td></td>
</tr>
</tbody>
</table>

FUNCIONALIDAD Y CARÁCTER

<table>
<thead>
<tr>
<th>POLÍVALENCIA</th>
<th>TRANVERSAL</th>
<th>SECTORIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experto en ciberseguridad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingenieros de sistemas seguros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analista de ciberseguridad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingeniero en informática</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingeniero en telecomunicaciones</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MÁS VALORADOS

Perfiles más valorados por su cualificación y relevancia funcional:
- Expertos en ciberseguridad
- Ingenieros de sistemas seguros

COMPETENCIAS Y CONOCIMIENTOS MÁS DEMANDADOS

<table>
<thead>
<tr>
<th>RELACIONADOS CON LA CIBERSEGURIDAD</th>
<th>IDIOMAS, CONOCIMIENTOS DE PROTECCIÓN DE DATOS, SISTEMAS DE CIBERDEFENSA, ANÁLISIS DE RIESGOS, INGENIERÍA DE SISTEMAS Y ARQUITECTURAS SEGURAS. ANÁLISIS FORENSE DE SISTEMAS INFORMÁTICOS. ANÁLISIS DE MALWARE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELACIONADOS CON LA INGENIERÍA DE INFORMÁTICA Y TELECOMUNICACIONES</td>
<td>ÉTICA, AUTOFORMACIÓN, LIDERAZGO Y PROACTIVIDAD</td>
</tr>
</tbody>
</table>

GAP FORMACIÓN

<table>
<thead>
<tr>
<th>EXPERTO EN CIBERSEGURIDAD, INGENIERIA DE SISTEMAS SEGUROS, ANALISTA DE CIBERSEGURIDAD</th>
<th>LA FORMACIÓN EN CIBERSEGURIDAD ES RELATIVAMENTE NUEVA, SE IMPARTE EN POCAS UNIVERSIDADES Y POR CENTROS TECNOLÓGICOS ESPECÍFICOS. LA ESPECIALIZACIÓN EN CIBERSEGURIDAD SE HA LOGRADO POR MEDIO DE CURSOS EN LÍNEA.</th>
</tr>
</thead>
</table>
YACIMIENTO DE EMPLEO 5

BIG DATA

TENDENCIA DE DIGITALIZACIÓN
TENDENCIA EN CRECIMIENTO, CON PARTICIPACIÓN MAYORITARIA EN LAS FASES DE GESTIÓN DE LA PRODUCCIÓN Y EXPLOTACIÓN

El Big Data es un término asignado al proceso de recolección y análisis de grandes cantidades de datos generados por diferentes procesos. Dado al gran volumen de dichos datos los medios tradicionales de análisis son imposibles de utilizar por lo que se generan nuevas herramientas para facilitar dicho análisis.

PERFILES PROFESIONALES ASOCIADOS

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>TRADICIONAL</th>
<th>EMERGENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estadístico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingeniero Informático</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analista Big Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arquitecto Big Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingeniero Informático con Estadística</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANÁLISIS DESCRIPTIVO

TENDENCIA DE DEMANDA

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>ACTUAL</th>
<th>FUTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estadístico</td>
<td>Alta</td>
<td>Media</td>
</tr>
<tr>
<td>Ingeniero Informático</td>
<td>Alta</td>
<td>Media</td>
</tr>
<tr>
<td>Analista Big Data</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Arquitecto Big Data</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Ingeniero Informático con Estadística</td>
<td>Alta</td>
<td>Alta</td>
</tr>
</tbody>
</table>

FUCNIONALIDAD Y CARÁCTER

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>POLIVALENTE</th>
<th>TRANVERSAL</th>
<th>SECTORIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estadístico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingeniero Informático</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analista Big Data</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Arquitecto Big Data</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Ingeniero Informático con Estadística</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

MÁS VALORADOS

Perfiles más valorados por su cualificación y relevancia funcional:
Analista Big Data
Arquitecto Big Data
Ingeniero Informático con Estadística

COMPETENCIAS Y CONOCIMIENTOS MÁS DEMANDADOS

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>CONOCIMIENTOS</th>
<th>COMPETENCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estadístico</td>
<td>Conocimientos estadísticos para manejo de gran volumen de datos, regresiones, análisis de grandes volúmenes de datos, conocimientos de paquetes estadísticos como R, SPSS, SAS, MongoDB, Weka, análisis SQL y NoSQL con Apache Hadoop entre otros.</td>
<td>Trabajo en equipo, capacidad de análisis y comunicación, resolutivo, interés por la autoformación</td>
</tr>
<tr>
<td>Ingeniero Informático</td>
<td>Conocimientos de programación en lenguajes como R, PYTHON, Java para desarrollar arquitecturas. Manejo de herramientas de minería de datos como Weka, Orange, Spark.</td>
<td>Trabajo en equipo, resolutivo, capacidad de autoformación y actualización de conocimientos tecnológicos para utilizar nuevas tecnologías de programación.</td>
</tr>
</tbody>
</table>

GAP FORMACIÓN

<table>
<thead>
<tr>
<th>PERFILES PROFESIONALES</th>
<th>GAP DE FORMACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estadístico</td>
<td>El doble grado Informática-Estadística es relativamente nuevo, anteriormente los ingenieros informáticos requerían conocimientos de estadística y los estadísticos conocimientos de informática, sin embargo, la especialización en Big Data en ambos casos es mínima, es necesario una especialización a través de un posgrado.</td>
</tr>
<tr>
<td>Ingeniero Informático</td>
<td></td>
</tr>
</tbody>
</table>

CONOCIMIENTOS

- Conocimientos estadísticos para manejo de gran volumen de datos, regresiones, análisis de grandes volúmenes de datos, conocimientos de paquetes estadísticos como R, SPSS, SAS, MongoDB, Weka, análisis SQL y NoSQL con Apache Hadoop entre otros.
- Conocimientos de programación en lenguajes como R, PYTHON, Java para desarrollar arquitecturas. Manejo de herramientas de minería de datos como Weka, Orange, Spark.
PROFESIONES FUTURAS EN CASTILLA Y LEÓN

Para la identificación de estos perfiles, se ha revisado el estudio realizado por Deloitte e Infoempleo “Empleo IT: Las 17 profesiones que serán clave en el futuro”, dicha investigación establece que en los próximos 10 años en España, ante la digitalización de la economía, se van a necesitar contratar a 100.000 profesionales especializados en tecnologías de la información. Partiendo de las 17 profesiones que se distinguen en el informe, se han realizado un análisis de ofertas en diferentes buscadores de empleo, así como contrastado la información con otros informes o estudios y se han detectado cinco perfiles que presentan alta demanda en el mercado actual nacional y nula o escasa por la Industria castellana y leonesa no siendo además identificadas por la empresas consultadas. Por lo que, se perfilan como oportunidades de empleo que se generarán según vaya avanzando la transformación digital en nuestra región.

Estos perfiles, los cuales se describen a continuación, son:

- Calidad de Software
- Big Data Architect
- IT Project Manager
- UX Designer
- Desarrollador Android/IOS
Diseña, instala y evalúa los procesos y sistemas de aseguramiento de la calidad del software. Se encargan de validar la calidad y seguridad de plataformas desarrolladas dentro de las empresas o para las empresas.

De los perfiles identificados es el único que presenta cierta demanda en Castilla y León, siendo ésta únicamente en los Servicios.

Estos profesionales actualmente tienen su mayor mercado laboral en Madrid y en Cataluña.
De los perfiles emergentes identificados, es uno de los que concentra el mayor número de ofertas de empleo.

Los arquitectos Big Data se encargan de diseñar la arquitectura y uso de la plataforma de Big Data. Precisan de altos conocimientos estadísticos, en programación y en matemáticas. Es un perfil de alto nivel muy cualificado difícil de encontrar, existiendo un desajuste entre su oferta y su demanda.

El mercado laboral de estos profesionales se canaliza en las empresas de Servicios principalmente en Madrid y, en menor medida, en Cataluña.
Las ofertas identificadas para los Project Manager IT (Tecnologías de la Información), se localizan en la Industria y Servicios, tejidos empresariales con mayor nivel de implantación tecnológica y digital que los de construcción y agricultura.

El Project Manager es el responsable de gestionar los proyectos de IT. Se encarga de su diseño y planificación hasta su ejecución y cierre. Ha de presentar alta capacidad organizativa, de resolución de conflictos, toma de decisiones, gestión de equipos entre otros aspectos.

Se requieren para este perfil Ingenieros, especialmente en informática o en telecomunicaciones y con experiencia en gestión de proyectos y conocimientos en tecnologías avanzadas.
El diseñador UX crea experiencias online que se traducen en servicios, procesos o producto que da una empresa para satisfacer las necesidades del usuario final.

De momento estos profesionales se demandan en Servicios en la Comunidad de Madrid y en Cataluña, demanda que se irá ampliando a otros sectores y comunidades según vaya evolucionando esta tecnología.

Entre las habilidades que más se valoran destacan la capacidad de creatividad e innovación de estos profesionales.
Profesional dedicado a la programación de aplicaciones móviles, se encarga de todo el proceso desde el diseño, desarrollo y funcionamiento.

Es un perfil, en tecnología de la información, de los más solicitados en el mercado. En principio en Castilla y León su solicitud es discreta y se reduce a los Servicios, mientras que en el mercado nacional se expande a la Industria.

Se requieren principalmente ingenieros informáticos, en telecomunicaciones o en sistemas especializados, por lo que es muy valorable que cuenten con un máster o posgrado en desarrollo de dispositivos y aplicaciones móviles.
V. ANÁLISIS DAFO
V. ANÁLISIS DAFO

<table>
<thead>
<tr>
<th>DEBILIDADES</th>
<th>AMENAZAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participación PIB de la Industria de Castilla León en el conjunto regional muy inferior a la media Europea.</td>
<td>Alta velocidad de la transformación digital</td>
</tr>
<tr>
<td>Falta de diversificación del tejido industrial.</td>
<td>Carencia de profesionales con competencias digitales adaptadas a los cambios</td>
</tr>
<tr>
<td>Bajo nivel de competitividad regional (RCI) respecto a Europa</td>
<td>Brecha formativa entre la universidad y el entorno laboral.</td>
</tr>
<tr>
<td>Baja preparación tecnológica de las empresas hacia la 4.0 con respecto a la media europea.</td>
<td>Fuga de talento.</td>
</tr>
<tr>
<td>Nivel tecnológico predominante de la pyme del sector medio bajo.</td>
<td>Gap generacional ante la innovación.</td>
</tr>
<tr>
<td>Destrucción de empleo poco cualificado y dificultad de las empresas de reorientarlo hacia competencias digitales.</td>
<td>Dificultad de acceso de la micro y pyme a la innovación tecnológica.</td>
</tr>
<tr>
<td>Coste alto de inversión para la pyme.</td>
<td>Resistencia al cambio de empresas y trabajadores.</td>
</tr>
<tr>
<td>Carencia de cultura digital empresarial.</td>
<td>Deficiencia de la infraestructura tecnológica especialmente en el medio rural.</td>
</tr>
<tr>
<td>Cultura Empresarial orientada más a la producción que al cliente.</td>
<td>Incertidumbre legislativa ante la aplicación de robots.</td>
</tr>
<tr>
<td>FORTALEZAS</td>
<td>OPORTUNIDADES</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>• Fuerte tejido empresarial industrial de micro y pyme susceptible de generar empleo</td>
<td>• Coyuntura económica de crecimiento</td>
</tr>
<tr>
<td>• Industria asentada sobre sectores que son motor de la economía regional</td>
<td>• Potenciar la competitividad de las empresas fortaleciendo los gaps tecnológicos.</td>
</tr>
<tr>
<td>• Existencia de casos de éxito en los sectores industriales.</td>
<td>• Generar una industria del conocimiento interconectada entre universidad, centros tecnológicos y científicos y las empresas.</td>
</tr>
<tr>
<td>• Existencia de clústeres regionales</td>
<td>• Nuevos yacimientos de empleos derivados de tecnologías emergentes.</td>
</tr>
<tr>
<td>• Existencia de Centros Tecnológicos punteros</td>
<td>• Reciclaje profesional de los trabajadores hacia la 4.0</td>
</tr>
<tr>
<td>• La Industria es un motor de la economía regional</td>
<td>• Generar alianzas colaborativas entre la pyme para transmitir conocimientos e intercambios de tecnología 4.0.</td>
</tr>
<tr>
<td>• Existencia de empresas precursoras con capacidad tractora.</td>
<td>• Integrar en el sistema educativo competencias digitales y tecnológicas.</td>
</tr>
</tbody>
</table>
VI. CONCLUSIONES Y PROPUESTAS
VI. CONCLUSIONES Y PROPUESTAS

Conclusiones

Hablar de la industria 4.0, es limitarnos a un concepto que no describe el fenómeno que afecta a todas las dimensiones de un país, desde la industria, la economía, la salud, los hogares, las empresas, etc. Es más adecuado definirlo como la Cuarta Revolución Industrial, que se traduce en la digitalización de la industria conectada y de la sociedad en su conjunto, por lo que a lo largo del estudio nos hemos referido a esta revolución o transformación digital.

Hoy en día, la Industria castellana y leonesa de forma generalizada todavía no visualiza el escenario final resultante del proceso de cambio asociado a la Cuarta Revolución Industrial. Esta es una de las conclusiones principales que se extrae del estudio. Así, el sector Automoción, al ser más precursor, lo visualiza de una forma más concreta, mientras que en el resto de sectores están en proceso de implantación. Aun así la incertidumbre es generalizada en todas las empresas consultadas.

Mientras que en Europa los analistas por los estudios y datos trasladados, sitúan a otros países europeos con alto nivel de preparación para asumir la transformación digital, estando ya inmersos en este cambio, Castilla y León como España, se sitúan por detrás de las empresas europeas. Nuestro tejido industrial carece del grado de sofisticación e innovación que la media europea y, se presenta un mercado laboral menos eficiente y de menor tamaño.

Sin embargo, Castilla y León con una industria que constituye uno de los pilares de la economía regional, pero aglutinada en dos sectores como es el de automoción y el agroalimentario, presenta grandes posibilidades de desarrollo. Por ello, es imprescindible fortalecer otras áreas económicas y diversificar su producción, a fin de alcanzar una industria competitiva y sostenible, reforzada por un entorno digital innovador, y ha de
hacerse ya mismo, de forma inmediata debido a aceleración de la innovación y la velocidad de la transformación digital. Este es el momento de tomar decisiones y de actuar.

Otro aspecto que puede frenar el progreso de la industria castellano y leonesa es la atomización, en empresas de carácter micro y PYME, del 99,5% de su tejido empresarial. Así, se ha identificado que este colectivo empresarial (micro y la PYME) el que mayores dificultades tiene a la hora de implementar tecnologías y procesos que imponen los cambios de modelo productivo, por lo que es el que más peligro presenta de desaparecer y donde más pérdida de empleo puede generarse.

Dentro de este contexto, la digitalización Industrial se visualiza como una oportunidad de crecimiento para las empresas y en conjunto para la sociedad de Castilla y León. Así, estamos actualmente en un momento crucial de inflexión, hacia el proceso de digitalización en su máxima expresión, la customización de la producción, es decir, la flexibilidad de la producción orientada al cliente. Esta customización se basa en un modelo de empresa colaborativa, con sus proveedores e incluso con la propia competencia que puede generar empleo y posicionar a la Industria de Castilla y León como un sector más competitivo en el mercado nacional e internacional.

Quien no se sume a la Revolución Digital es muy probable, según todos los expertos consultados, que desaparezca, y lo mismo aquellas empresas que no realicen este cambio de forma adecuada. Así, se requiere sensibilizar a la micro y PYME de la necesidad de sumarse a la transformación digital, para ello es necesario crear entornos colaborativos que generen alianzas de cooperación mediante el intercambio de conocimiento, maquinarias y de trabajadores entre estas empresas, generar una industria de conocimiento digital sólida respaldada con proyectos empresariales con salidas reales en el mercado y detectar empresas impulsoras como efecto tractor hacia la pyme.
Las tecnologías asociadas a la Digitalización de la Industria ofrecen posibilidades infinitas, y como se ha podido ver, las empresas impulsoras cobran transcendental importancia como motor del resto de empresas de la región. Cómo sucedió en otros momentos de la historia, las tecnologías acabarán imponiéndose, pero el decidir cuándo implementarlas y el saber cómo utilizarlas es una decisión que cuanto antes se tome puede acarrear muchos beneficios, no solo para las empresas, sino para la sociedad en todo su conjunto.

El sector Automoción muestra un nivel de madurez alto, posicionándose las empresas impulsoras de este sector por encima de la media, pero el ritmo de avance de la Cuarta Revolución Industrial es rápido, por lo que las empresas no deben rezagarse ni ser perezosas a la hora de realizar el último esfuerzo hacia la madurez digital, puesto que lo que hoy es el nivel más alto de madurez, quizás mañana ya no lo sea.

El camino por recorrer hacia la plena madurez digital por parte de las empresas impulsoras de la Industria de Castilla y León aún es largo, pero esta situación debe verse como una oportunidad para crecer y crear un tejido empresarial más competitivo en los mercados. Este camino hacia la madurez digital, debe enfocarse en cubrir el espacio que separa a las empresas impulsoras para implantar las tecnologías más avanzadas de forma plena, y que ello sirva de impulso para el resto de empresas de cada uno de los sectores, contribuyendo a crear una estrategia que aúna los esfuerzos de todos los agentes implicados en el proceso de digitalización que nos propone la llegada de la Cuarta Revolución Industrial.

Una de las transformaciones estructurales del empleo en las que más va a influir la inclusión de la digitalización industrial es el cambio del perfil profesional tipo que se va a demandar, siendo éste diferente al que hasta ahora se ha dado en las empresas del sector industrial. Aunque esta transformación digital del empleo a perfiles más cualificados va a ser generalizada en la sociedad castellana y leonesa, es especialmente destacable en la Industria, donde se va a producir con mayor tendencia este cambio o influencia, dado que se caracteriza por ser fuente de empleo para personas con baja cualificación.
En las empresas consultadas la implantación de la tecnología no ha supuesto pérdida de empleo hasta ahora, dado que con la tecnificación se han creado puestos más cualificados, aprovechando la mano de obra de cadena, y por incremento de la producción. Es decir en número cuantitativo incluso han aumentado el número de trabajadores, sin embargo las personas sin cualificación son las que han sufrido la pérdida del empleo.

¿Qué se debe hacer para reciclarlas, qué responsabilidad tienen las empresas?

Importante debe ser potenciar el Factor Humano, mediante el presente estudio se pretende dar valor añadido a las personas, remarcando que digitalizar no es sinónimo de ser sustituido por un robot, sino de interconexión entre la máquina y el hombre hacia un fin común. Desde esta perspectiva, la introducción de tecnologías y nuevos procesos no debe provocar la pérdida de cualidades del trabajador, sino que debe potenciar sus competencias profesionales en otra dirección, dirigidas principalmente hacia la optimización y eficiencia del trabajo en el marco de sistema de customización, siendo las empresas las principales responsables de facilitar esta tarea a sus trabajadores más veteranos.

El trabajador sin cualificación no tiene cabida en las empresas impulsoras, y, en un futuro, ante la tendencia de digitalización de la Industria, de forma limitada en el mercado laboral. Por ello, cabe incidir en que desde la Administración y con el esfuerzo de todos: agentes sociales, sistema educativo y el ámbito empresarial, se refuerce la formación reglada de base en las escuelas, especialmente en secundaria, en cuanto a competencias y conocimientos que se requieren en tecnificación y digitalización, para evitar el abandono escolar y, por tanto la generación de personas sin futuro profesional que pueden convertirse en colectivos de riesgo de exclusión social.
El perfil que se demanda es el denominado STEM (especializados en Ciencia, Tecnología, Ingeniería y Matemáticas). Existe déficit de estos profesionales en el sistema educativo, por lo que no se va a cubrir su demanda, exigida por las empresas, ante la digitalización de la industria. A esta carencia de profesionales hay que sumar la Fuga de Talento hacia otros países en busca de trabajo por el efecto de la crisis económica. Se hace vital, por parte de la administración, el tomar medidas para favorecer el retorno este talento perdido.

Otro aspecto que debilita el mercado laboral actual, es la carencia generalizada de los trabajadores en competencias digitales e incluso de conocimientos que se requieren para afrontar los retos actuales. Para hacer frente a ello, se necesita la implicación de las empresas en elaborar programas internos de formación para sus trabajadores, enfocados a habilitarles en esas deficiencias. Hay casos de éxito a nivel regional de Pyme y gran empresa que demuestran que se puede estar en la vanguardia y superar las dificultades y obstáculos para poder impulsar esta transición hacia la industria conectada.

Es fundamental para superar todos los retos que exige la Cuarta Revolución Industrial y situar a las empresas industriales regionales en una estatus de competitividad en el mercado actual, alinear el conocimiento (sistema educativo reglado y centros tecnológicos) con las estrategias empresariales. Ambos ámbitos, en su concepto más amplio, están obligados a entenderse y funcionar de forma coordinada, dando soluciones a las necesidades del mercado laboral actual.

Como resultado de esta digitalización se están generando oportunidades de empleo y Startups especializadas en tecnologías de la información y en dar soporte a la industria hacia su automatización.

Entre los perfiles profesionales que se están demandando, por un lado se localizan nuevas profesiones que están surgiendo ante las nuevas demandas del mercado digital y otras que se traducen en la reconversión de los profesionales tradicionales ante los nuevos retos de la industria conectada.
Destacar entre ellos el experto en Machine Learning, en Data Scientist, el Matemático, en Marketing Digital, el Ingeniero Programador, el Ingeniero Electrónico y de Automática o el Técnico de Mantenimiento. Son profesiones en alza, muy valoradas actualmente y se prevé que su demanda sea mayor en el futuro. Existe carencia de este tipo de perfiles en el mercado por lo que son excelentes oportunidades de empleo para aquellas personas que estén en búsqueda activa de empleo en la región.

Entre las actividades económicas que están apareciendo, como nuevos yacimientos de empleo en Castilla y León, ante la digitalización de la industria, resaltar: Robótica y Sistemas, Lean Manufacturing, Realidad Aumentada y Realidad industrial, Ciberseguridad y Big Data.

Según expertos en recursos humanos, se estima que más del setenta por ciento de las profesiones futuras todavía no existen, sin embargo se han detectado que especialistas en calidad Software, en Big data Architect, en IT Project Manager, UX Designer o el Desarrollador Android/IOS, son algunas de las ocupaciones que, aunque todavía no se demandan o se hacen de forma muy limitada en Castilla y León, se están desarrollando en Madrid o Barcelona, regiones avanzadas a nivel nacional en la digitalización de su industria siendo su demanda creciente, por lo que se prevé que son futuros perfiles para las empresas según se vaya avanzando la industria conectada en nuestra región.

Dentro de este contexto descrito, la Digitalización Industrial se visualiza como una oportunidad de crecimiento para las empresas y en conjunto para la sociedad de Castilla y León. Así, estamos actualmente en un momento crucial de inflexión, hacia el proceso de digitalización en su máxima expresión, la customización de la producción, es decir, la flexibilidad de la producción orientada al cliente. Esta flexibilización de la producción se cimenta en un modelo de empresa colaborativa con sus proveedores que puede generar empleo y posicionar a la Industria de Castilla y León como un sector más competitivo en el mercado nacional e internacional.

En este sentido, se incluyen una serie de recomendaciones a tener en cuenta por todos los agentes sociales implicados en la construcción de la sociedad de Castilla y León:
Recomendaciones

Como medida principal se propone diseñar y ejecutar una Estrategia de Digitalización Regional propia para Castilla y León liderada por la Administración, generada y consensuada desde el Dialogo Social, en la que participen activamente las empresas industriales (incluida la micro, la pyme y gran empresa), entidades que presentan el conocimiento (universidad, centros educativos, centros tecnológicos y Startups) y organismos de ámbito empresarial y social (sindicatos, clúster, asociaciones empresariales profesionales así como específicas de Tecnología de la Información).

Dicha estrategia persigue aunar y centralizar de forma coordinada y específica mediante objetivos concretos, todas las iniciativas, actuaciones y propuestas que existen actualmente, así como las que se recomiendan a continuación, generadas para fomentar la cooperación entre todos estos agentes citados, implicados en la transición hacia la transformación digital de la industria.

Esta recomendación, resultado del trabajo de campo realizado y trasladada su solicitud desde algunas entidades y expertos consultados, se cimenta en su coordinación por parte de una única figura, la cual se puede denominar ”Zar Digital”, que presenta el reto de focalizar todo aquello relacionado con la Cuarta Revolución Industrial. Esta figura permitirá dar visibilidad y personificar una Estrategia de Digitalización, crucial para que desde Castilla y León se impulse un tejido empresarial dinámico y competitivo en un nuevo panorama que cambiará tecnológicamente a una velocidad distinta a lo acontecido hasta el momento.

El ”Zar Digital” será la persona encargada de coordinar iniciativas y recursos que actualmente se encuentran dispersas y que se traducen en múltiples iniciativas vinculadas al concepto “4.0” que se superponen, dando lugar a una duplicidad.

La Administración de Castilla y León debe ser el facilitador de esta estrategia y el líder que garantice la colaboración y sinergias entre el ámbito privado y público para
garantizar una transición efectiva hacia la industria conectada, que ayude a potenciar y diversificar en diferentes actividades la industria regional y a alcanzar empresas competitivas en el mercado europeo, por lo que ha de dar un paso adelante y aprovechar este reto que nos propone la Cuarta Revolución Industrial para afrontar la transformación de la Industria y de la sociedad como una oportunidad para crecer y poder posicionarse de forma favorable frente a la inevitable trasformación digital.

Entre las recomendaciones que se hacen a la Administración a integrar en la estrategia propuesta, se localizan:

I. En primer lugar, se identifica la necesidad de sensibilizar a todo tejido empresarial de Castilla y León, en especial a la micro, pymes y aquellas más tradicionales, sobre en qué consiste la Cuarta Revolución Industrial y el papel que deben jugar dentro de este proceso de cambio, así como las consecuencias que puede acarrear el quedarse fuera de esta carrera hacia la Digitalización.

A lo largo del estudio se visualiza la importancia de informar, y acompañar a las empresas en este cambio dotándolas de herramientas, de conocimientos, de información, conceptos y sobretodo recursos, que les ayude a prepararse y a realizar el cambio para ser competitivos. Ya hay acciones que se realizan pero no llegan todas las entidades, para este fin a modo de ejemplo se propone:

- Realización de una campaña masiva de comunicación que incluya:

 o Mailing y correos a todas las entidades periódicamente con noticias e información específica sobre oportunidades de negocio, avances tecnológicos, actuaciones de la administración, etc. sobre digitalización industrial.

 o Jornadas para trasladar conocimientos y casos de éxito de entidades precursores o impulsoras que han dado el paso hacia la Digitalización, con casos de éxito en soluciones concretas, especialmente para la micro y la pyme.
- Posibilidad de implementar temporalmente un Consultor 4.0 en las empresas, que les ayude al autodiagnóstico (ya sea presencial o virtual) para familiarizar y asesorar a las empresas hacia el cambio.

2. **Potenciar una Industria del Conocimiento sólida y unificada conformada por Organismos de la Universidad, Centros de Formación y Educativos, Centros Tecnológicos y Startups que permita cohesiónar el mundo académico y científico**, y que aporte valor a toda la cadena del conocimiento, llegando a generar ideas reales adecuadas al mundo empresarial.

3. **Impulsar la creación de Entornos Colaborativos dentro de la Comunidad Autónoma que permita cohesiónar la industria del conocimiento y el ámbito empresarial al que tengan cabida todos los agentes implicados en esta transformación digital**: Empresas, Centros Tecnológicos, Centros Formativos, Sindicatos, Clúster, Asociaciones empresariales, Sindicatos, Administraciones Públicas, y todos aquellos entes que puedan aportar valor a la generación de propuestas e iniciativas que promuevan sinergias facilitar la adecuación de todos a los cambios que propone el proceso de digitalización y conseguir mitigar los posibles efectos negativos que aparezcan ligados a esta transformación de la sociedad.

A modo de ejemplo se identifican iniciativas que se pueden desarrollar desde el ADE:

- Liderar un concurso de ideas de empresas startup o empresas en soluciones tecnológicas para casar ideas con necesidades de empresas.

- Generar alianzas, entre una startup con empresas relevantes de la región, para facilitarles servicios específicos en tecnologías 4.0 hacia la digitalización.

4. **Estos Entornos Colaborativos deben convertirse de igual modo en herramientas para la creación de agrupaciones de pequeñas empresas**, las cuales no podrían adecuarse y competir en los mercados por si solos, y de este modo acercarse a las tecnologías y los nuevos procesos que impondrán los mercados a través de la Cuarta Revolución Industrial. En este sentido, se considera crucial fomentar y facilitar la agrupación de
pymes o micro empresas mediante cooperativas o alianzas estratégicas para responder a ofertas o proyectos de forma conjunta, y potenciar la asociación de estas agrupaciones con centros tecnológicos y Startups innovadoras que permitan fortalecer el tejido industrial de la región.

Una iniciativa puede ser, fundar premios para la Micro y Pyme castellana y leonesa dirigidos al desarrollo de proyectos o soluciones concretas de digitalización en colaboración con centros tecnológicos, universidad,....., que genere empleo.

5. Mejorar la difusión del Programa de la Comisión Europea “Horizonte 2020” y ayudar a las pymes a acceder a las ayudas, puesto que según muchos responsables consultados, existe cierta dificultad para acceder y tramitar las propuestas les hace desistir de solicitarlas.

El programa Horizonte 2020 integra por primera vez todas las fases desde la generación del conocimiento hasta las actividades más próximas al mercado: investigación básica, desarrollo de tecnologías, proyectos de demostración, líneas piloto de fabricación, innovación social, transferencia de tecnología, pruebas de concepto, normalización, apoyo a las compras públicas pre-comerciales, capital riesgo y sistema de garantías, lo cual puede servir de impulso a las empresas más pequeñas para integrarse en el proceso de Digitalización de forma más fácil.

6. Mejorar la formación de base, principalmente la formación secundaria, en cuanto a competencias y conocimientos que se requieren en tecnificación y digitalización desde el mercado laboral, adecuándose y adelantándose a las necesidades que demandan los centros de trabajo, evitando aumentar el número de personas no preparadas para adecuarse a las exigencias competenciales que impondrá la Digitalización, e impedir de este modo que las personas sin futuro profesional que pueden convertirse en colectivos de riesgo de exclusión social sigan aumentando en la sociedad.

A partir de este espacio colaborativo que conforma la estrategia, se identificarán las necesidades competenciales que requieren los trabajadores ante los nuevos retos, a fin
de ser trasladadas a los organismos regionales institucionales competentes de la administración para actualizar los programas educativos de la escuela con objeto de adaptarlos a las necesidades reales del mercado laboral.

7. En el proceso de adecuación se considera clave **incluir garantías de formación para el reciclaje de los trabajadores**, puesto que **ningún trabajador puede quedarse sin oportunidades de optar a un puesto de trabajo** porque no se le haya ofrecido la oportunidad de reciclarse o formarse para adecuarse a las competencias requeridas.

8. **Poner en el centro del proceso de Digitalización al trabajador**, pues él debe ser el mayor beneficiado de este avance social, siendo conscientes desde las empresas que a la hora de introducir las tecnologías en las empresas, la sustitución de personas por máquinas de forma masiva puede acarrear mayores problemas sociales que ventajas, lo cual está reñido completamente con los principios del desarrollo humano y con la Responsabilidad Social que se debe exigir a las empresas.

9. **Esta estrategia ha de contribuir a formar un mercado laboral competente**, mediante el establecimiento de alianzas que creen sinergias entre la administración, empresas de la industria y centros de formación, con objeto de alinear las necesidades de contratación de las empresas con los desempleados de la región. Así, se recomienda desarrollar iniciativas mediante convenios o ayudas específicas a las empresas para contratar desempleados formados en competencias digitales y conocimientos concretos para cubrir puestos específicos y cualificados en empresas.

De este modo se cumple un doble objetivo, adecuar el mercado laboral a las necesidades de las empresas de la industria ante los retos de la digitalización y, favorecer el aumento del empleo en la región.
VII. FUENTES CONSULTADAS
FUENTES CONSULTADAS

COMITÉ ECONÓMICO Y SOCIAL EUROPEO: “Dictamen sobre los efectos de la digitalización sobre el sector de los servicios y el empleo en el marco de las transformaciones industriales”. 2016.

MAGISTERIO “El boletín de las nuevas profesiones, Industria 4.0”. 2016.

MINISTERIO DE INDUSTRIA, ENERGÍA Y TURISMO & ESCUELA DE ORGANIZACIÓN INDUSTRIAL: “Las tecnologías IOT dentro de la industria conectada 4.0”. 2015.

ROLAND BERGER “España 4.0: el reto de la transformación digital de la economía”. 2016.

ROLAND BERGER. “Industry 4.0 The Role of Switzerland within a European manufacturing revolution”. 2015.

ROLAND BERGER: “The Industry 4.0 Transition Quantified” 2016.

VIII. ANEXOS
ANEXOS

Resumen de Jornadas Asistidas

CONGRESO E-EVOLUCION

29 de Septiembre de 2016 en el Auditorio de la Feria de Valladolid

El congreso discurrió con la exposición de diversas ponencias dentro de 6 bloques temáticos. A continuación se realiza un resumen de cada uno de estos discursos, destacando las aportaciones más relevantes.

1. El mundo e-voluciona. ¿Me debo unir a la transformación digital?

El renacimiento digital

Mosiri Cabezas. Directora de Transformación Digital y Aceleración de Negocio en Telefónica.

4 esquinas de la transformación digital; mitos y realidades

Joana Sánchez. Presidenta de ÍNCIPY y vicepresidenta de ADIGITAL.

Transformación digital

Ana Alonso. Directora de la división de Grandes Empresa y Partners de Microsoft Ibérica.

Es importante tener en cuenta que lo digital crece a una velocidad exponencial, y nuestro cerebro no está preparado para esto por lo que esta transformación da miedo. Esta presentación es para ayudar a pasar de las palabras a la acción.
✓ Cliente. Lo primero es importante enfocar la acción en el cliente, el cliente de hoy es mucho más que un consumidor, está en prácticamente en todas las partes de la cadena de valor.

✓ Tecnología. Todo lo que se pueda digitalizar acabara digitalizándose. El modelo profesional y el de trabajo va a cambiar.

✓ Estrategia. Se tiene que tener un rumbo, tener clara la visión como profesionales, e incluso como personas.

✓ Transformación. Es algo profundo que tiene que implicar a todas las áreas de la organización y es la que obliga a plantear muchos cambios de todo.

✓ Simplificar. Antes de utilizar la tecnología para simplificar, debemos pensar en lo que se está haciendo es suficiente o se puede simplificar de alguna medida, hay que poner un orden antes de incorporar la tecnología.

✓ Innovar. de una manera distinta, de una manera digital, fácil, rápido y barato.

✓ Diferenciación. las personas son las que hacen la diferencia, el talento es fundamental, en donde seamos capaces de integrar equipos con mucha experiencia, gente joven, distintas formaciones, etc.

✓ Capacidad de pensar. es una capacidad importante que no se debe perder con la tecnología. Hay que encontrar el punto de equilibrio en donde la tecnología engendra nuestra capacidad.

✓ El sentir. como especie no nos debemos permitir el dejar de sentir, no podemos vivir solo en el mundo digital, como seres humanos no podemos deshacernos de esas cosas que nos hacen distintos.

No estamos en una época de cambios si no en un cambio de época, todo se reinventa, y tenemos que ser activos.
Mitos

✓ Lo digital es marketing. La transformación digital es una transformación de todo el negocio, se debe trabajar de manera distinta en toda la compañía. Se debe convertir lo convencional en algo extraordinario.

✓ Lo digital es tecnología. Lo digital tiene que ver con los empleados, las personas y la cultura es el principal freno para la transformación digital, si no se consigue cambiar la visión de las personas y el equipo la transformación será imposible, es necesario salir de la zona de confort y esto no es sencillo. Se debe empezar por procesos que conecten personas.

✓ Lo digital es un canal más. Se debe situar al cliente, consumidor o usuario en el centro de todo. Es importante conocer al cliente, no hacerle un canal más, centrar la red en ellos. En una palabra lograr que su experiencia sea buena, que nos recomienden y debemos conocerles saber quiénes son.

✓ Lo digital es e-commerce. La transformación digital ha dado cabida a nuevos modelos de negocio no necesariamente dedicados al e-commerce. La visión de los negocios cambia, debe tener más alma.

2. Ciberseguridad y Protección de datos. ¡Ojo avizor!

¿Por qué preocuparme por la ciberseguridad de mi empresa?
Paloma Llaneza. Senior Partner and Head of information Technology en Razona LegalTech

La empresa ante los retos de privacidad y ciberseguridad
Miguel Rego. Director general del Instituto Nacional de Ciberseguridad (INCIBE)

En la mente de los cibercriminales. Cómo identificarlos y reaccionar ante posibles ataques
Silvia Barrera. Inspector Jefa de la Sección Técnica de la Unidad de Investigación Tecnológica de Policía Nacional
Estamos sometidos todos a ataques, hay una guerra cibernética en el mundo, todos formamos parte de esta guerra, pasa mucho sin embargo pensamos que no estamos en el punto de mira. A quien le va a interesar mis datos? Sin embargo todos estamos sometidos a ataque, todos tenemos valor económico.

El acceso a una cámara web se puede vender y puede valer hasta por 10 dólares, cada uno de nosotros somos interesantes.

- Hacking
- Malware
- Phishing
- Rootkits
- Spam
- Spyware

El cibercrimen se está convertido en el negocio más rentable, que la prostitución e incluso el tráfico de drogas.

El INCIBE es una institución pública, actor importante para gestionar la seguridad en el ciberespacio. La ciberseguridad ha venido para quedarse, cada vez dependemos más de la tecnología y tiene que ser fiable. En los últimos 2 años se han producido más de 200 hechos relevantes, extorciones, robos, ciberataques con cuantiosas pérdidas, etc.

La ciberseguridad somos todos, debemos custodiar la confidencialidad de la información a la que se tiene acceso durante el trabajo, alerta con la diligencia a los responsables ante cualquier incidente de seguridad, es imprescindible resguardar el secreto de las contraseñas de los ojos ajenos. La “ciberhigiene” es necesaria, se deben cambiar la contraseñas periódicamente por ejemplo. Se deben tener buenos hábitos de seguridad de datos e información tanto personales como en la empresa.
Un cibercriminal, no es el que realiza un delito físico, la evidencia está en la red, no existe un cuerpo, no hay nada. Hay una extensión de google chrome que permite ver quien ha visitado tu perfil, por sentido común y viendo las opiniones sabes si hay algún timo o no. Para exponer nuestras cuentas, dejándolas en listas para su venta. No sabemos cómo actuar ante estas amenazas.

3. La comunicación y las redes. ¿Qué aportan los medios sociales?

Las redes sociales se han convertido en poderosos canales de difusión y alcance. Las redes sociales ahora son necesarias y es la forma de llegar a la gente. Juan Ramón Lucas, David del Cura, Mónica Carrillo y Alejandro Salgado. Son los participantes del coloquio en el que se habla sobre la comunicación y las redes sociales.

Un periodista tiene que estar en las redes sociales, es inevitable estar fuera, todos vamos de manera intuitiva, no somos nativos digitales y hemos ido aprendiendo de forma gradual aplicando el sentido común sabiendo el puesto que se desempeña.

El principal beneficio que tenemos es la información que tenemos gracias a las redes sociales, es importante ya que tenemos una relación más cercana con los oyentes. Aun así hay un número importante de personas que no están en las redes sociales, sin embargo te sirven para darte una idea de lo que estás haciendo.

Los programas de medios de comunicación de manera inevitable tienen que estar en las redes sociales, ya que permiten como canal ampliar los horizontes de los medios de comunicación tradicional. (Por ejemplo la radio, gracias a las redes sociales y la transmisión en estos le está salvando)

La información pública y la participación ciudadana es muy importante, ya que aporta información. y existe una colaboración directa.
4. ¿Pero cómo transformo mi negocio? Del dicho al hecho...

10 prioridades para la transformación digital de la empresa

Joost Van Nispen. Fundador y presidente de ICEMD

Como transformar digitalmente mi empresa. Por dónde empezar y que no hay que olvidar

José de la Peña. Consultor, escritor y coach. Director de Kinbusiness, la escuela de emprendimiento digital.

Las 5 prioridades corto plazo directamente vinculadas a Cloud, Mobile Social y Big Data son:

- Customer experience.- conocer y mejorar la experiencia del cliente “customer journey”
- Medios y Redes Sociales.- optimización del uso de medios sociales,
- Cultura y Liderazgo.- para digitalizar una empresa es necesario tener la tecnología, los procesos y las personas. Siendo las personas lo más importante,
- Estrategia de Contenidos.- es necesario tener una gestión de contenidos, valoración, ideas, co-creación, no solo es crowdsourcing, es crowdfunding.
- Mobile first.- convertir la empresa en mobile first, el móvil ha convertido a todos los medios en interactivos y participativos.

A largo plazo:

Wearables, Web Visual, Internet de las cosas, Inteligencia artificial y Realidad aumentada.

La transformación digital es para todos y tiene más de transformación que de digital. Es cambiar para ser coherentes con el nuevo contexto digital, pero para eso hay que conocerlo bien, para lograr esto hay que APRENDER. Esta transformación va de manera rápida, sin embargo no hay que olvidar lo que hace y es un negocio.
Hay que tener en cuenta que el Internet es un escaparate en donde podemos crear contenido y dar a conocer el negocio. Lo digital se mide con el posicionamiento, la movilidad, la experiencia del usuario, el marketing digital, contenidos, redes sociales, e-commerce, analítica web.

Sin embargo para empezar a digitalizar la empresa no hay que rendirse, esto es a prueba y error, hay que “entrenar” mucho y caer seguramente pero lo que hay que hacer es seguir intentando.

5. La economía se mueve. Fintech y Medios de pago. Presente y futuro.

Enterprise as service, el nuevo paradigma de la banca

Pepe Cerezo. Director de Evoca Media

El poder de la marca

Luis García Cristóbal. Head of Iberia de Unionpay International

Los 10 hábitos financieros que el sector Fintech nos hará cambiar

Jesús Pérez. Presidente de la Asociación Española de Fintech & Insurtech y consejero de Bolsa.com

Fintech es el término utilizado para la tecnología financiera. Es la industria de las compañías que utilizan las nuevas tecnologías para competir con el mercado tradicional y sus intermediarios tradicionales. Engloba productos y servicios financieros innovadores a través de la aplicación de la tecnología.

El modelo EAS, nos debe servir para en la medida de lo posible adelantarnos al futuro, estamos abriendo una ventana muy importante de cambios, la transformación y la digitalización es una realidad dentro de todos los sectores.

✓ Simplifican los procesos
✓ Mejoran la experiencia de usuario
✓ Son “mobile first”
✓ Buscan nichos de negocio
✓ Fomentan la automatización
✓ DATA companies

Dentro de los sistemas financieros también existen ya intermediarios digitales, ya existen compañías que de forma muy sencilla te ofrecen realizar pagos por ejemplo. Actualmente existe una transformación de la baca.

Ahora se puede pagar sin tarjeta, se pude pagar con relojes, dentro de nada se puede pagar con otro tipo de wearables. Al final cliente es el que decide sus formas de pago sin embargo las empresas bancarias ya están pensando en diferentes formas de movilizar sus servicios de manera tecnológica y digital.

Existirán hábitos nuevos relacionados con las finanzas, ahora pagamos con el móvil, ya tenemos monederos digitales, pagos a un entorno cercano con transferencias digitales, tecnología biométrica para hacer pagos, la posible existencia de nuevas monedas, plataformas de crowdfunding para encontrar financiación, la reputación digital tendrá valor económico, será posible invertir en activos digitales, el asesor financiero será artificial, se podrá invertir desde 1 euro en acciones, se puede comprar un porcentaje de alguna casa la podríamos comprar en la nube.

Emprender como filosofía de vida
Rafael Ausejo. CEO y fundador de Ruralka
La oportunidad del producto fresco online
Jose Luis Montesino. CEO y fundador de Comefruta.es

Dos ejemplos claros de emprendimiento y el uso de las nuevas tecnologías y la digitalización para los nuevos modelos de negocios.

Existen 3 errores comunes cuando se emprende:
Partir de que todos somos iguales en una empresa.

Hacerte esclavo de tu idea.

Prestar más atención a la estructura y tecnología que a tu cliente.

3 aciertos cuando emprendes:

- Tener plan A, B y C y ser muy flexible
- Saber crear un buen equipo y delegar
- Pensar siempre en el cliente

La venta online es una gran oportunidad, y existen herramientas sencillas, las inversiones de arranque son menores ya que internet es un canal con gran potencial y futuro. No es fácil, las nuevas tecnologías son solo una ayuda, lo márgenes también son menores y en el mundo en el que vivimos es muy competitivo.

Por ejemplo existen Hipermercados digitales, ya no se definen por la superficie o el tamaño ocupado, no importa la ubicación, cambian estrategias, tienen un producto surtido, hacen que la compra y la búsqueda sea fácil, y es un mejor precio sin ir ni cargar.
El 16 de noviembre de 2016 se celebró en el Palacio Kursaal de Donosti el congreso “Basque Industry 4.0: The meeting point 2016” en el marco de la estrategia que está desarrollando el Gobierno Vasco para integrar sus empresas de la forma más rápida y eficiente en la Cuarta Revolución Industrial mediante el impulso hacia la digitalización de los sectores industriales de la región.

En este encuentro se expusieron las características más relevantes del proceso de digitalización que está sufriendo la Industria a nivel global, permitiendo la interconectividad de todos los elementos de los procesos dentro de la empresa, y de esta con el exterior, tanto con proveedores como con el cliente final, gracias a una serie de tecnologías denominadas palancas o impulsoras del proceso de digitalización industrial.

De igual modo, se debatió sobre las posibilidades y ventajas que ofrece este fenómeno para el crecimiento de la competitividad empresarial dentro de los sectores industriales, y entorno a este, a través de nuevos servicios y procesos generados por la aplicación de las tecnologías clave de la Cuarta Revolución Industrial.
LA ESTRATEGIAVASCA. BASQUE INDUSTRY 4.0

“Tengamos claro que nunca ha existido, existe ni existirá una zona de confort en la que nuestra Industria pueda relajarse”. Con estas palabras inauguró la consejera de Desarrollo Económico y Competitividad, Arantxa Tapia, la tercera edición del congreso Basque Industry 4.0.. La consejera insistió a los más de 2.000 asistentes en la “obligación de permanecer atentos a lo que nos rodea, al clima internacional, a la calidad de nuestra producción, a nuestras capacidades de innovación, y sobre todo, a revisar permanentemente nuestra gestión de acuerdo a lo que dicte el mercado, aunque el viento pueda soplar a favor. La Industria 4.0 ha llegado para quedarse, para evolucionar y hacer de la nuestra una industria más competitiva y mejor posicionada internacionalmente. Seamos muy conscientes de ello”.

Se puede ver el video de la inauguración en: https://youtu.be/mvL5QBIpQdI

LA EMPRESA DIGITAL

De gran interés fue la ponencia realizada por el Dr. Günter Beitinger (Vicepresidente de fabricación. Digital Factory Division-SIEMENS AG), el cual expuso los avances que desde su compañía están haciendo por integrarse rápidamente en la Cuarta Revolución Industrial, convirtiéndose en una de las compañías pioneras en este sentido mediante la aplicación de tecnologías y el cambio de procesos, productos, servicios y relaciones con el exterior, así como las ventajas que puede aportar estos cambios a las empresas industriales.

Beitinger, destacó que “muchos de estos procesos, como la estandarización, están también al alcance de las empresas pequeñas, para las que es aún más importante aprovechar las ventajas y ahorros que ofrece la tecnología. Nosotros en las dos plantas de Amberg tenemos hoy el mismo número de trabajadores que hace unos años, pero fabricamos nueve veces más”.

Ver video de la presentación del Dr. Günter Beitinger en: https://youtu.be/e-vGyt_ILeg
DIAL 4.0: “EL MOMENTO DE LA TERTULIA”

Representantes de empresas Titanium, ABB, CIE Automotive, Microsoft o Gestamp expusieron en una mesa redonda organizada bajo el formato de tertulia radiofónica su visión y experiencia sobre la situación, futuro, estrategias, claves, retos, etc. en torno a la Industria 4.0, todo ello en una tertulia moderada por Enrique Rodal, periodista experto en tecnologías.

Participantes:

- Beatriz González (GESTAMP)
- José Esmoris (CIE AUTOMOTIVE)
- Marc Segura (ABB)
- Borja Lanseros (TITANIUM)
- Ana Montero (MICROSOFT EUROPA)

Se puede ver video de la tertulia en: https://youtu.be/4veZOHnQhQs

MIRANDO AL LÍDER. LA EXPERIENCIA DE UNA EMPRESA INDUSTRIAL DESTACADA EN DIGITALIZACIÓN.

Basque Industry 4.0 cuenta con la participación de la empresa guipuzcoana de máquina-herramienta Etxe-Tar, una de las compañías de Euskadi que encabzan la carrera por la digitalización y de cuya experiencia se puede aprender como ejemplo de liderazgo en Industria 4.0. Javier Díaz presentó su visión a través de una empresa líder como PLETHORA IOT GRUPO ETXE-TAR.

Se puede ver el video de la presentación de Javier Diaz en:

https://youtu.be/dtRYknVRwjQ
MATCHING 4.0. “EL MOMENTO DE LAS ALIANZAS”

Una de las partes más enriquecedoras de la Jornada fue sin duda la presentación de las alianzas entre start-ups y empresas que se complementan. Muchas empresas industriales han visto clara la necesidad de avanzar hacia la Industria 4.0 y han sido conscientes de que solas no pueden hacerlo. Por ello, han optado por contar con tecnologías, bien a través de alianzas, bien a través de start-ups tecnológicas que les complementen. Así surgen “matchings” entre industrias tradicionales y nuevas empresas TEICs. En este espacio se presentó la experiencia de empresas surgidas en el marco de la iniciativa BIND 4.0 promovida por el Gobierno Vasco.

A continuación se muestran las alianzas presentadas:

<table>
<thead>
<tr>
<th>STARP-UPS</th>
<th>EMPRESAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irisbond</td>
<td>ABB</td>
</tr>
<tr>
<td>Bigda Solutions</td>
<td>Mercedes Benz</td>
</tr>
<tr>
<td>Innovae</td>
<td>Danobat Group</td>
</tr>
<tr>
<td>Decidata</td>
<td>Euskaltel</td>
</tr>
</tbody>
</table>

Se puede ver el video de la presentación de Alianzas en: https://youtu.be/rDqwqwRt8Ns

ALIANZAS PARA PROCESOS, PRODUCTOS Y SERVICIOS INTELIGENTES

Otra de las presentaciones más interesantes fue la que presentó alianzas de éxito entre empresas TEIC´s y Empresas Industriales. De la mano de las industrias de tecnologías Electrónicas y de la Información, se presentaron casos de éxito de soluciones TEICs aplicadas en procesos, productos y servicios que refuerzan la competitividad de las empresas industriales.
En esta mesa redonda participaron:

- José Mª Ansola (ANER SISTEMAS INFORMÁTICOS, S.L)
- Cristina de la Maza (CARSA-Grupo Innovalia)
- José Ignacio Román (IDS INGENIERÍA INFORMÁTICA INDUSTRIAL, S.A)
- Fran Manzano (IGARLE, S.L.)
- Iñaki Eguia (ITS - Unit7)
- Igor Pérez (SEMANTIC SYSTEMS, S.L.)
- Armando Astarloa (SoC-e)
- Unai Extremo (VIRTUALWARE 2007, S.A.)

Se puede ver el video de la presentación de Alianzas en: https://youtu.be/9o3-8dqT4oE

UNA MIRADA AL FUTURO 4.0.

Para finalizar la Jornada, Centros Tecnológicos y Universidades vascas presentaron, con un enfoque didáctico y con el objetivo de demostrar las aplicaciones, el estado de la tecnología y la investigación en el marco de la Industria 4.0, más allá del estado del arte actual.

En este espacio mostraron su visión:

- Ane Blanco, Ana Ayerbe, Jon Agirre y Yolanda de Miguel (TECNALIA)
- Josu Bilbao (IK4-IKERLAN)
- Basilio Sierra (UPV/EHU)
- Pablo García (DEUSTOTECH – Univ. Deusto)
- Zigor Azpilgain (MONDRAGON U.)

Se puede ver el video de las ponencias en: https://youtu.be/Sa76iKpu8LA
La comunidad DataBeers tiene como misión crear puntos de encuentro para difusión y cooperación entre expertos en Big Data y Data Science. El objetivo de la jornada que se ha realizado el 23 de Febrero del 2017 en Salamanca ha sido el de compartir experiencias y conocimientos entre los asistentes y los ponentes.

El programa:

EL PORQUÉ DEL VALOR DE TUS DATOS EN INTERNET
Javier Parra. *Súmate*
“Los datos deben ser considerados como activos digitales, y con un buen análisis se le da valor a esos activos.

ANÁLISIS ESPACIAL
Víctor Vicente. *USAL*
“Los datos para el análisis espacial, ¿cómo hacer un mapa de probabilidades para controlar la contaminación?”
DATOS Y TRANSPORTE DE MERCANCÍAS EN LAS CIUDADES

Javier Olmos, CARTIF

“Datos para posicionamiento en la ciudad, tareas como carga y descarga, repartos e interacción coche-semáforo”

COMPUTACIÓN COGNITIVA ABIERTA Y DATOS

Alberto Cabrero, ViewNext

“Las compañías necesitan convertir los datos en conocimiento, ya que el futuro está en el negocio cognitivo”

LA COLMENA DE DATOS

Sol Lerma y Ricardo Pereira, BeonPrice

“Big Data en Management, la utilidad del Machine Learning para optimizar resultados”

PROYECTO HARMONY

Ana Rodríguez, IBSAL

“El Big Data en la medicina, proyecto para la lucha y prevención contra el Cáncer”

LA ESTADÍSTICA A TU SERVICIO

Mauricio Beltrán, Junta CyL

“La importancia de los datos y los cambios que estos pueden generar. Pasaremos de la sociedad de la información a la sociedad del conocimiento”

Este evento ha sido de utilidad para inspeccionar uno de los nichos de empleo presentes en esta Revolución Industrial 4.0 y está relacionado con el Big Data. Este análisis de datos masivo está presente en todos los sectores y se han demostrado diversas aplicaciones en diferentes áreas.
En el caso de la medicina en Harmony se están utilizando datos masivos relacionados con paciente que padecen cáncer, esto con la finalidad de realizar algoritmos predictivos y buscar la detección temprana e incluso su prevención gracias a estos datos. En el caso de industria o servicios, desde CARTIF se está colaborando con la DGT para obtener el posicionamiento de vehículos, gracias a los datos obtenidos en Google maps datos sobre estado de semáforos, situación de aparcamientos, para de esta manera ayudar a las personas encargadas de repartir haciendo la tarea de carga y descarga más eficiente.

Como resumen los datos están presentes en todo lo que hacemos, y pueden ser utilizados en muchas áreas, desde la medicina, hasta la geoespacial. Pueden ayudarnos a aparcar un coche, como para encontrar los mejores precios de determinado producto. El científico de datos es el trabajo más polivalente y debe estar presente en todos los sectores para aportar valor a esos datos.

Con esta información e inspeccionando el nicho relacionado con el Análisis Big Data se han identificado diversas áreas de acción, dejándole como un perfil polivalente, emergente, necesario y útil en prácticamente todos los sectores.